精英家教网 > 初中数学 > 题目详情
满足“两数的和与这两数的积相等”这一条件的有理数有(  )
A.1对B.2对C.4对D.无穷多对
相关习题

科目:初中数学 来源: 题型:

满足“两数的和与这两数的积相等”这一条件的有理数有(  )
A、1对B、2对C、4对D、无穷多对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

满足“两数的和与这两数的积相等”这一条件的有理数有(  )
A.1对B.2对C.4对D.无穷多对

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

满足“两数的和与这两数的积相等”这一条件的有理数有


  1. A.
    1对
  2. B.
    2对
  3. C.
    4对
  4. D.
    无穷多对

查看答案和解析>>

科目:初中数学 来源: 题型:

图①是一张长与宽不相等的矩形纸片,同学们都知道按图②所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片(如图③),
精英家教网
(1)实验:
将这两张纸片分别按图④、⑤所示的折叠方法进行:
精英家教网
请你分别在图④、⑤的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?
(2)当原矩形纸片的AB=4,BC=6时,分别求出(1)中连接折痕各端点所得四边形的面积,并求出它们的面积比;
(3)当纸片ABCD的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于(2)所得到的两个四边形的面积比?
(4)用(2)中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的8张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两梯形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

图①是一张长与宽不相等的矩形纸片,同学们都知道按图②所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片(如图③),

(1)实验:
将这两张纸片分别按图④、⑤所示的折叠方法进行:

请你分别在图④、⑤的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?
(2)当原矩形纸片的AB=4,BC=6时,分别求出(1)中连接折痕各端点所得四边形的面积,并求出它们的面积比;
(3)当纸片ABCD的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于(2)所得到的两个四边形的面积比?
(4)用(2)中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的8张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两梯形的面积.

查看答案和解析>>

科目:初中数学 来源:2011年中考复习专项训练《实验与操作》(解析版) 题型:解答题

(2010•博野县二模)图①是一张长与宽不相等的矩形纸片,同学们都知道按图②所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片(如图③),

(1)实验:
将这两张纸片分别按图④、⑤所示的折叠方法进行:

请你分别在图④、⑤的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?
(2)当原矩形纸片的AB=4,BC=6时,分别求出(1)中连接折痕各端点所得四边形的面积,并求出它们的面积比;
(3)当纸片ABCD的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于(2)所得到的两个四边形的面积比?
(4)用(2)中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的8张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两梯形的面积.

查看答案和解析>>

科目:初中数学 来源:2010年河北省保定市博野县中考数学二模试卷(解析版) 题型:解答题

(2010•博野县二模)图①是一张长与宽不相等的矩形纸片,同学们都知道按图②所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片(如图③),

(1)实验:
将这两张纸片分别按图④、⑤所示的折叠方法进行:

请你分别在图④、⑤的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?
(2)当原矩形纸片的AB=4,BC=6时,分别求出(1)中连接折痕各端点所得四边形的面积,并求出它们的面积比;
(3)当纸片ABCD的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于(2)所得到的两个四边形的面积比?
(4)用(2)中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的8张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两梯形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,已知五边形ABCDE中,AB∥ED,∠A=∠B=90°,则可以将五边形ABCDE分成面积相等的两部分的直线有
无数
条;满足条件的直线可以这样确定:
如过C作AB的平行线,将五边形分成一个矩形和一个梯形,过梯形中位线中点及矩形对角线的交点的直线即是;设上述直线与AB、ED的交点分别是P、Q,则过PQ中点M且与AB、ED相交的直线都可以将五边形的面积平分.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线轴交于A、B两点(点A在点B左侧),与y轴交

于点C,且当=0和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。

(1)求这条抛物线的解析式;

(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;

(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;

(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。

查看答案和解析>>

科目:初中数学 来源:2008年初中毕业升学考试(河南濮阳卷)数学(带解析) 题型:解答题

如图,抛物线轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当=O和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。

(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。

查看答案和解析>>


同步练习册答案