精英家教网 > 初中数学 > 题目详情
点C在线段AB上,不能判断点C是线段AB中点的式子是(  )
A.AB=2ACB.AC+BC=ABC.BC=
1
2
AB
D.AC=BC
相关习题

科目:初中数学 来源:同步题 题型:单选题

C在线段AB上,不能判断点C是线段AB的中点的式子是
[     ]
A.AB=2AC
B.AC+BC=AB
C.BC=AB
D.AC=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

点C在线段AB上,不能判断点C是线段AB中点的式子是(  )
A、AB=2AC
B、AC+BC=AB
C、BC=
1
2
AB
D、AC=BC

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点C在线段AB上,不能判断点C是线段AB中点的式子是(  )
A.AB=2ACB.AC+BC=ABC.BC=
1
2
AB
D.AC=BC

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

点C在线段AB上,不能判断点C是线段AB中点的式子是


  1. A.
    AB=2AC
  2. B.
    AC+BC=AB
  3. C.
    BC=数学公式AB
  4. D.
    AC=BC

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

点C在线段AB上,不能判断点C是线段AB中点的式子是
[     ]
A.AB=2AC
B.AC+BC=AB
C.BC=AB
D.AC=BC

查看答案和解析>>

科目:初中数学 来源: 题型:013

点C在线段AB上,不能判断点C是线段AB中点的式子是

[  ]

A.AC=BC
B.AC+BC=AB
C.AB=2AC
D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.
(1)求证:△ODE是等边三角形.
(2)线段BD、DE、EC 三者有什么数量关系?写出你的判断过程.
(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两条公路AB,CD(均视为直线).东西向公路CD段限速,规定最高行驶速度不能越过60千米/时,并在南北向公路离该公路100米的A处没置了一个监测点.已知点C在A的北偏西60°方向上,点D在A的北偏东45°方向上.
(1)经监测,一辆汽车从点C匀速行驶到点D所的时间是15秒,请通过计算,判断该汽车在这段限速路上是否超速?(参考数据:
3
=1.732)
(2)若一辆大货车在限速路上由D处向西行驶,一辆小汽车在南北向公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,两车在匀速行驶过程中的最近距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,两条公路AB,CD(均视为直线).东西向公路CD段限速,规定最高行驶速度不能越过60千米/时,并在南北向公路离该公路100米的A处没置了一个监测点.已知点C在A的北偏西60°方向上,点D在A的北偏东45°方向上.
(1)经监测,一辆汽车从点C匀速行驶到点D所的时间是15秒,请通过计算,判断该汽车在这段限速路上是否超速?(参考数据:数学公式=1.732)
(2)若一辆大货车在限速路上由D处向西行驶,一辆小汽车在南北向公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,两车在匀速行驶过程中的最近距离是多少?

查看答案和解析>>

科目:初中数学 来源:2012年安徽省中考数学模拟试卷(四)(解析版) 题型:解答题

如图,两条公路AB,CD(均视为直线).东西向公路CD段限速,规定最高行驶速度不能越过60千米/时,并在南北向公路离该公路100米的A处没置了一个监测点.已知点C在A的北偏西60°方向上,点D在A的北偏东45°方向上.
(1)经监测,一辆汽车从点C匀速行驶到点D所的时间是15秒,请通过计算,判断该汽车在这段限速路上是否超速?(参考数据:=1.732)
(2)若一辆大货车在限速路上由D处向西行驶,一辆小汽车在南北向公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,两车在匀速行驶过程中的最近距离是多少?

查看答案和解析>>


同步练习册答案