精英家教网 > 高中数学 > 题目详情
函数y=f(x)的图象与函数g(x)=log2x(x>0)的图象关于原点对称,则f(x)的表达式为(  )
A.f(x)=
1
log2x
(x>0)
B.f(x)=
1
log2(-x)
(x<0)
C.f(x)=-log2x(x>0)D.f(x)=-log2(-x)(x<0)
相关习题

科目:高中数学 来源: 题型:

6、y=f(x)的图象与函数g(x)=log2x(x>0)的图象关于原点对称,f(x)的表达式为
-log2(-x)

查看答案和解析>>

科目:高中数学 来源:2010年高考数学生物钟适应训练(03)(解析版) 题型:解答题

y=f(x)的图象与函数g(x)=log2x(x>0)的图象关于原点对称,f(x)的表达式为    

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

y=f(x)的图象与函数g(x)=log2x(x>0)的图象关于原点对称,f(x)的表达式为 ________.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,函数g(x)与f(x)的图象关于y轴对称,且当x∈(0,1)时,g(x)=lnx-ax2
(1)求函数f(x)的解析式;
(2)若对于区间(0,1)上任意的x,都有|f(x)|≥1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且函数y=f(x)与y=g(x)的图象关于直线x=1对称,当x>2时,g(x)=a(x-2)-(x-2)3(a为常数).
(1)求f(x)的解析式;
(2)若f(x)对区间[1,+∞)上的每个x值,恒有f(x)≥-2a成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市石室中学高三(上)9月月考数学试卷(文科)(解析版) 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,函数g(x)与f(x)的图象关于y轴对称,且当x∈(0,1)时,g(x)=1nx-ax2
(1)求函数f(x)的解析式;
(2)若对于区间(0,1)上任意的x,都有|f(x)|≥1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2005-2006学年湖北省武汉市华中师大一附中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

设f(x)是定义在R上的奇函数,且函数y=f(x)与y=g(x)的图象关于直线x=1对称,当x>2时,g(x)=a(x-2)-(x-2)3(a为常数).
(1)求f(x)的解析式;
(2)若f(x)对区间[1,+∞)上的每个x值,恒有f(x)≥-2a成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省南通市高三(上)期末数学试卷(解析版) 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,函数g(x)与f(x)的图象关于y轴对称,且当x∈(0,1)时,g(x)=1nx-ax2
(1)求函数f(x)的解析式;
(2)若对于区间(0,1)上任意的x,都有|f(x)|≥1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南通市高考数学一模试卷(解析版) 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,函数g(x)与f(x)的图象关于y轴对称,且当x∈(0,1)时,g(x)=1nx-ax2
(1)求函数f(x)的解析式;
(2)若对于区间(0,1)上任意的x,都有|f(x)|≥1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在R上的奇函数,且函数y=f(x)与y=g(x)的图象关于直线x=1对称,当x>2时,g(x)=a(x-2)-(x-2)3(a为常数).
(1)求f(x)的解析式;
(2)若f(x)对区间[1,+∞)上的每个x值,恒有f(x)≥-2a成立,求a的取值范围.

查看答案和解析>>


同步练习册答案