精英家教网 > 初中数学 > 题目详情
解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程 (2x+5)2-4(2x+5)+3=0的解为(  )
A.x1=1,x2=3B.x1=-2,x2=3
C.x1=-3,x2=-1D.x1=-1,x2=-2
相关习题

科目:初中数学 来源: 题型:

4、解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程 (2x+5)2-4(2x+5)+3=0的解为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2-4(2x+5)+3=0的解为
x1=-2,x2=-1
x1=-2,x2=-1

查看答案和解析>>

科目:初中数学 来源:恩施州 题型:单选题

解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程 (2x+5)2-4(2x+5)+3=0的解为(  )
A.x1=1,x2=3B.x1=-2,x2=3
C.x1=-3,x2=-1D.x1=-1,x2=-2

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市江津区油溪中学九年级(上)期末数学试卷(解析版) 题型:填空题

解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2-4(2x+5)+3=0的解为   

查看答案和解析>>

科目:初中数学 来源:2013年4月中考数学模拟试卷(16)(解析版) 题型:选择题

解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程 (2x+5)2-4(2x+5)+3=0的解为( )
A.x1=1,x2=3
B.x1=-2,x2=3
C.x1=-3,x2=-1
D.x1=-1,x2=-2

查看答案和解析>>

科目:初中数学 来源:2011年湖北省恩施州中考数学试卷(解析版) 题型:选择题

解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程 (2x+5)2-4(2x+5)+3=0的解为( )
A.x1=1,x2=3
B.x1=-2,x2=3
C.x1=-3,x2=-1
D.x1=-1,x2=-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2-4(2x+5)+3=0的解为________.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为解方程(x2-1)2-5(x2-1)+4=0,我们可将x2-1看作一个整体,然后设x2-1=y;那么原方程可化为y2-5y+4=0①,解这个方程,得y1=1,y2=4.当y1=1时,x2-1=1,所以数学公式;当y2=4时,x2-1=4,所以数学公式则原方程的解为数学公式数学公式数学公式数学公式
解答下列问题:
(1)填空:在由原方程得到方程①的过程中,利用______法达到降次的目的,体现了______的数学思想;
(2)请利用上述方法解方程:(x2-2)2-5(x2-2)+6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y…①,
那么原方程可化为y2-5y+4=0,
解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±
2

当y=4时,x2-1=4,∴x2=5,∴x=±
5

故原方程的解为x1=
2
,x2=-
2
,x3=
5
,x4=-
5

解答问题:
(1)上述解题过程,在由原方程得到方程①的过程中,利用
 
法达到了解方程的目的,体现了转化的数学思想;
(2)请利用以上知识解方程x4-x2-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,
设x2-1=y…①,
那么原方程可化为y2-5y+4=0,解得y1=1,y2=4,
当y=1时,x2-1=1,∴x2=2,∴x=±
2

当y=4时,x2-1=4,∴x2=5,∴x=±
5

故原方程的解为x1=
2
x2=-
2
x3=
5
x4=-
5

以上解题方法叫做换元法,在由原方程得到方程①的过程中,利用换元法达到了解方程的目的,体现了转化的数学思想;请利用以上知识解方程:
(1)x4-x2-6=0.                   (2)(x2+x)2+(x2+x)=6.

查看答案和解析>>


同步练习册答案