精英家教网 > 初中数学 > 题目详情
设y=kx+b,且当x=1时,y=1;当x=2时,y=-4,则k、b的值依次为(  )
A.3,-2B.-3,4C.6,-5D.-5,6
相关习题

科目:初中数学 来源: 题型:

设y=kx+b,且当x=1时,y=1;当x=2时,y=-4,则k、b的值依次为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

设y=kx+b,且当x=1时,y=1;当x=2时,y=-4,则k、b的值依次为(  )
A.3,-2B.-3,4C.6,-5D.-5,6

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

设y=kx+b,且当x=1时,y=1;当x=2时,y=-4,则k、b的值依次为


  1. A.
    3,-2
  2. B.
    -3,4
  3. C.
    6,-5
  4. D.
    -5,6

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
x1x2=
c
a
.我们把它们称为根与系数关系定理.
如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

请你参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为等腰直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,b2-4ac=
 

(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?

查看答案和解析>>

科目:初中数学 来源:2011年江西省宜春市宜丰县中考数学模拟试卷(一)(解析版) 题型:解答题

若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:.我们把它们称为根与系数关系定理.
如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
AB=|x1-x2|====
请你参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为等腰直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,b2-4ac=______;
(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?

查看答案和解析>>

科目:初中数学 来源: 题型:

某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》常考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》常考题集(19):2.3 二次函数的应用(解析版) 题型:解答题

某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(25):2.3 二次函数的应用(解析版) 题型:解答题

某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

查看答案和解析>>


同步练习册答案