| 已知2是关于x的方程:x2-3x+a=0的一个解,则а的值是( ) |
相关习题
科目:初中数学
来源:
题型:

已知:抛物线y=(k-1)x
2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?
查看答案和解析>>
科目:初中数学
来源:
题型:
8、已知2是关于x的方程:x2-3x+a=0的一个解,则2а-1的值是( )
查看答案和解析>>
科目:初中数学
来源:
题型:
已知2是关于x的方程:x2-3x+a=0的一个解,则а的值是( )
查看答案和解析>>
科目:初中数学
来源:
题型:解答题
已知:抛物线y=(k-1)x2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?
查看答案和解析>>
科目:初中数学
来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版)
题型:解答题
已知:抛物线y=(k-1)x
2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

查看答案和解析>>
科目:初中数学
来源:第34章《二次函数》中考题集(30):34.4 二次函数的应用(解析版)
题型:解答题
已知:抛物线y=(k-1)x
2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

查看答案和解析>>
科目:初中数学
来源:第2章《二次函数》中考题集(29):2.3 二次函数的应用(解析版)
题型:解答题
已知:抛物线y=(k-1)x
2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

查看答案和解析>>
科目:初中数学
来源:第6章《二次函数》中考题集(29):6.4 二次函数的应用(解析版)
题型:解答题
已知:抛物线y=(k-1)x
2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

查看答案和解析>>
科目:初中数学
来源:第27章《二次函数》中考题集(28):27.3 实践与探索(解析版)
题型:解答题
已知:抛物线y=(k-1)x
2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

查看答案和解析>>
科目:初中数学
来源:第26章《二次函数》中考题集(27):26.3 实际问题与二次函数(解析版)
题型:解答题
已知:抛物线y=(k-1)x
2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

查看答案和解析>>