精英家教网 > 初中数学 > 题目详情
若a为方程x2+x-5=0的解,则a2+a+1的值为(  )
A.16B.12C.9D.6
相关习题

科目:初中数学 来源: 题型:

4、若a为方程x2+x-5=0的解,则a2+a+1的值为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若a为方程x2+x-5=0的解,则a2+a+1的值为(  )
A.16B.12C.9D.6

查看答案和解析>>

科目:初中数学 来源:《第23章 一元二次方程》2009年单元测试卷(一)(解析版) 题型:选择题

若a为方程x2+x-5=0的解,则a2+a+1的值为( )
A.16
B.12
C.9
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
x1x2=
c
a
.这一结论称为一元二次方程根与系数关系,它的应用很多,请完成下列各题:
(1)应用一:用来检验解方程是否正确.
检验:先求x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

再将你解出的两根相加、相乘,即可判断解得的根是否正确.(本小题完成填空即可)
(2)应用二:用来求一些代数式的值.
①已知:x1、x2是方程x2-4x+2的两个实数根,求(x1-1)(x2-1)的值;
②若a、b是方程x2+2x-2013=0的两个实数根,求代数式a2+3a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在实数范围内,方程x2=-1无解,为使开方运算在负数范围内可以进行,我们规定i2=-1.定义一种新数:Z=a+bi({a、b为实数}),并规定实数范围内的所有运算法则对于新数Z=a+bi?({a、b为实数});仍然成立.例如:Z2=(a+bi)2=(a+bi)•(a+bi)=a2+2a•bi+(bi)2=a2-b2+2abi,若Z=-
1
2
+
3
2
i
,则Z2=(-
1
2
+
3
2
i)2=(-
1
2
)2+2(-
1
2
)(
3
2
i)+(
3
2
i)2=-
1
2
-
3
2
i
,依据上述规定,
(1)若Z=-
1
2
+
3
2
i
,试求Z3的值;
(2)若Z=-
1
2
+
3
2
i
,试求z2008的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在实数范围内,方程x2=-1无解,为使开方运算在负数范围内可以进行,我们规定i2=-1.定义一种新数:Z=a+bi({a、b为实数}),并规定实数范围内的所有运算法则对于新数Z=a+bi?({a、b为实数});仍然成立.例如:Z2=(a+bi)2=(a+bi)•(a+bi)=a2+2a•bi+(bi)2=a2-b2+2abi,若数学公式,则数学公式,依据上述规定,
(1)若数学公式,试求Z3的值;
(2)若数学公式,试求z2008的值.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学原创试卷大赛(40)(解析版) 题型:解答题

在实数范围内,方程x2=-1无解,为使开方运算在负数范围内可以进行,我们规定i2=-1.定义一种新数:Z=a+bi({a、b为实数}),并规定实数范围内的所有运算法则对于新数Z=a+bi?({a、b为实数});仍然成立.例如:Z2=(a+bi)2=(a+bi)•(a+bi)=a2+2a•bi+(bi)2=a2-b2+2abi,若,则,依据上述规定,
(1)若,试求Z3的值;
(2)若,试求z2008的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:数学公式数学公式.这一结论称为一元二次方程根与系数关系,它的应用很多,请完成下列各题:
(1)应用一:用来检验解方程是否正确.
检验:先求x1+x2=______,x1x2=______.
再将你解出的两根相加、相乘,即可判断解得的根是否正确.(本小题完成填空即可)
(2)应用二:用来求一些代数式的值.
①已知:x1、x2是方程x2-4x+2的两个实数根,求(x1-1)(x2-1)的值;
②若a、b是方程x2+2x-2013=0的两个实数根,求代数式a2+3a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

综合题
阅读下列材料:
配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程x2-4x+4=0,则(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.则有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0则有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根据以上材料解答下列各题:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三边,且a2+b2+c2-ac-ab-bc=0,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

综合题
阅读下列材料:
配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程x2-4x+4=0,则(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.则有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0则有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根据以上材料解答下列各题:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三边,且a2+b2+c2-ac-ab-bc=0,试判断△ABC的形状,并说明理由.

查看答案和解析>>


同步练习册答案