精英家教网 > 高中数学 > 题目详情
若不等式ax2+bx+c>0的解集为(-1,2),则不等式a(x2+1)+b(x-1)+c>2ax的解集为(  )
A.(-2,1)B.(-∞,0)∪(3,+∞)C.(0,3)D.(-∞,-2)∪(1,+∞)
相关习题

科目:高中数学 来源: 题型:

若不等式ax2+bx+c>0的解集为(-1,2),则不等式a(x2+1)+b(x-1)+c>2ax的解集为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若不等式ax2+bx+c>0的解集为(-1,2),则不等式a(x2+1)+b(x-1)+c>2ax的解集为(  )
A.(-2,1)B.(-∞,0)∪(3,+∞)C.(0,3)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若不等式ax2+bx+c>0的解集为(-1,2),则不等式a(x2+1)+b(x-1)+c>2ax的解集为


  1. A.
    (-2,1)
  2. B.
    (-∞,0)∪(3,+∞)
  3. C.
    (0,3)
  4. D.
    (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州中学高一(上)期中数学试卷(解析版) 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州中学高一(上)期中数学试卷(解析版) 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若不等式ax2+bx+2>0的解集为(-
1
2
1
3
)
,求a+b的值;
(2)若二次不等式ax2+bx+c>0的解集是{x|
1
5
<x<
1
4
}
,求不等式2cx2-2bx-a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)若不等式ax2+bx+2>0的解集为数学公式,求a+b的值;
(2)若二次不等式ax2+bx+c>0的解集是数学公式,求不等式2cx2-2bx-a<0的解集.

查看答案和解析>>


同步练习册答案