精英家教网 > 高中数学 > 题目详情
函数f(x)=sin(
πx
4
+
π
5
).如果存在实数x1,x2,使得对任意的实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为(  )
A.8πB.4πC.8D.4
相关习题

科目:高中数学 来源: 题型:

函数f(x)=sin(
πx
4
+
π
5
).如果存在实数x1,x2,使得对任意的实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=sin(
πx
4
+
π
5
).如果存在实数x1,x2,使得对任意的实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为(  )
A.8πB.4πC.8D.4

查看答案和解析>>


同步练习册答案