精英家教网 > 初中数学 > 题目详情
计算:(-1)n+(-1)n-1(n是大于1的整数)的结果为(  )
A.-1B.-2C.2D.0
相关习题

科目:初中数学 来源: 题型:

3、计算:(-1)n+(-1)n-1(n是大于1的整数)的结果为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

计算:(-1)n+(-1)n-1(n是大于1的整数)的结果为(  )
A.-1B.-2C.2D.0

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

计算:(-1)n+(-1)n-1(n是大于1的整数)的结果为


  1. A.
    -1
  2. B.
    -2
  3. C.
    2
  4. D.
    0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)计算:数学公式
(2)解分式方程:数学公式
(3)先化简:数学公式,若a是绝对值不大于3的整数,请代入一个你喜欢的a的值求代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高淳县一模)某校九年级(1)班学生进行了一周的体育毕业考试训练,下面是该班学生训练前后的测试成绩统计图表(其中,统计图不完整).训练前成绩统计表.
测试前 18~20分 21~23分 24~26分 27~29分 30分
人数 6 8 9 8 5
训练后成绩统计图
(1)根据统计表提供的信息,补全统计图.
(2)下列说法正确的是
.(填写所有正确说法的序号)
①训练前各成绩段中,人数最多的是“24~26”;
②训练前后成绩的中位数所落在的成绩段由“24~26”到了“27~29”.
(3)小明说:“由统计表、统计图可知,训练后成绩的平均数一定大于训练前成绩的平均数.”你认为他的说法正确吗?如果正确,请通过计算说明;如果不正确,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•李沧区一模)【问题引入】
几个人拎着水桶在一个水龙头前面排队打水,水桶有大有小.他们该怎样排队才能使得总的排队时间最短?
假设只有两个人时,设大桶接满水需要T分钟,小桶接满水需要t分钟(显然T>t),若拎着大桶者在拎着小桶者之前,则拎大桶者可直接接水,只需等候T分钟,拎小桶者一共等候了(T+t)分钟,两人一共等候了(2T+t)分钟;反之,若拎小桶者在拎大桶者前面,容易求出出两人接满水等候(T+2t)分钟.可见,要使总的排队时间最短,拎小桶者应排在拎大桶者前面.这样,我们可以猜测,几个人拎着水桶在一个水龙头前面排队打水,要使总的排队时间最短,需将他们按水桶从小到大排队.
规律总结:
事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需要t分钟,并设拎大桶者开始接水时已等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者一共等候了(m+T+t)分钟,两人一共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了
2m+2t+T
2m+2t+T
分钟,共节省了
T-t
T-t
分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短.
【方法探究】
一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.
【实践应用1】
如图1在锐角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?
解析:
(1)先假定N为定点,调整M到合适的位置使BM+MN有最小值(相对的),容易想到,在AC上作AN′=AN(即作点N关于AD的对称点N'),连接BN′交AD于M,则M点是使BM+MN有相对最小值的点.(如图2,M点是确定方法找到的)
(2)在考虑点N的位置,使BM+MN最终达到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此时BM+MN的最小值是
4
4

【实践应用2】
如图3,把边长是3的正方形等分成9个小正方形,在有阴影的小正方形内(包括边界)分别取点P、R,于已知格点Q(每个小正方形的顶点叫做格点)构成三角形,则△PQR的最大面积是
2
2
,请在图4中画出面积最大时的△PQR的图形.

查看答案和解析>>

科目:初中数学 来源:2011年上海市黄浦区中考数学二模试卷(解析版) 题型:解答题

(2011•黄浦区二模)某市东城区2011年中考模拟考的总分(均为整数)成绩汇总如下表:
成绩461以下461

470
471

480
481

490
491

500
501

510
511

520
521

530
531

540
541

550
551

560
561

570
571

580
580以上合计
人数6288811098120135215236357380423356126283300
(1)所有总分成绩的中位数位于(B )
A.521到530;B.531到540;C.541到550;D.551到560
(2)区招生办在告知学生总分成绩的同时,也会将学生的定位分告诉学生,以便学生后期的复习迎考,其中学生定位分的计算公式如下:所得结果的整数部分(总分名次是按高到低排序),如学生甲的总分名次是356名,由,则他的定位分是10.如果该区小杰同学的定位分是38,那么他在区内的总分名次n的范围是______;
(3)下图是该区2011年本区内各类高中与高中阶段学校的招生人数计划图:
根据以往的经验,区的中考模拟考的成绩与最终的学生中考成绩基本保持一致,那么第(2)题中小杰希望通过后阶段的努力,争取考入市重点高中(录取总分按市重点高中、区重点高中、普通完中与中专职校依次下降),你估计小杰在现在总分成绩上大致要提高______分.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们把边长与面积都是整数的三角形称“整数三角形”,例如边长为3,4,5的三角形因为其面积等于6,所以它是一个“整数三角形”如图(1),小明在研究时发现,直角三角形中存在大量的“整数三角形;小颖在研究时发现,等腰三角形中也存在大量的”整数三角形“,
(1)如图(2),已知Rt△ABC中,∠ACB=90°,AC=8,BC=15,△ABC是一个”整数三角形“吗?请说明理由;
(2)请在下面分别画出一个周长为24的直角”整数三角形“和一个周长小于32的等腰”整数三角形“,说明:在图中标注每条边的长.
(3)小明经过研究发现非等腰的钝角三角形中也存在”整数三角形“,请画出一个非等腰的钝角”整数三角形“,使其周长等于32,说明:画出计算面积锁需的三角形的高,并在图上标出高和边长的数值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们把边长与面积都是整数的三角形称“整数三角形”,例如边长为3,4,5的三角形因为其面积等于6,所以它是一个“整数三角形”如图(1),小明在研究时发现,直角三角形中存在大量的“整数三角形;小颖在研究时发现,等腰三角形中也存在大量的”整数三角形“,
(1)如图(2),已知Rt△ABC中,∠ACB=90°,AC=8,BC=15,△ABC是一个”整数三角形“吗?请说明理由;
(2)请在下面分别画出一个周长为24的直角”整数三角形“和一个周长小于32的等腰”整数三角形“,说明:在图中标注每条边的长.
(3)小明经过研究发现非等腰的钝角三角形中也存在”整数三角形“,请画出一个非等腰的钝角”整数三角形“,使其周长等于32,说明:画出计算面积锁需的三角形的高,并在图上标出高和边长的数值.
作业宝

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x>0,符号[x]表示大于或等于x的最小正整数,如[0.3]=1;[3.2]=4;[5]=5…
(1)填空:[7
111
]
=
 
;若[x]=6,则x的取值范围是
 

(2)某市出租车收费标准规定如下:3公里以内(包括3公里)收费6元;超过3公里的,每超过1公里,加收1.2元(不足1公里的按1公里计算).用x表示所行的公里数,y表示行x公里应付车费,则乘车费可按如下的公式计算:
当0<x≤3(单位:公里)时,y=6(元);当x>3(单位:公里)时,y=6+1.2×[x-3](元).
某乘客乘车后付费18元,则该乘客所行的路程x(公里)的取值范围为
 

查看答案和解析>>


同步练习册答案