精英家教网 > 初中数学 > 题目详情
若x=4是关于x的方程
x
2
-a=4
的解,则a的值为(  )
A.-6B.2C.16D.-2
相关习题

科目:初中数学 来源: 题型:

19、若关于x的一元二次方程x2+a2x-5=0有一个解为1,则a的值是(  )

查看答案和解析>>

科目:初中数学 来源:内江 题型:单选题

若关于x的一元二次方程x2+a2x-5=0有一个解为1,则a的值是(  )
A.2B.-2C.±2D.不存在

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若关于x的一元二次方程x2+a2x-5=0有一个解为1,则a的值是


  1. A.
    2
  2. B.
    -2
  3. C.
    ±2
  4. D.
    不存在

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的两个一元二次方程:
方程:x2+(2k-1)x+k2-2k+
13
2
=0
    ①
方程:x2-(k+2)x+2k+
9
4
=0
      ②
(1)若方程①、②都有实数根,求k的最小整数值;
(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是
(填方程的序号),并说明理由;
(3)在(2)的条件下,若k为正整数,解出有实数根的方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x=4是关于x的方程
x
2
-a=4
的解,则a的值为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于x的两个一元二次方程:
方程:x2+(2k-1)x+k2-2k+
13
2
=0
    ①
方程:x2-(k+2)x+2k+
9
4
=0
      ②
(1)若方程①、②都有实数根,求k的最小整数值;
(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;
(3)在(2)的条件下,若k为正整数,解出有实数根的方程的根.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若x=4是关于x的方程
x
2
-a=4
的解,则a的值为(  )
A.-6B.2C.16D.-2

查看答案和解析>>

科目:初中数学 来源:2013年贵州省贵阳市开阳县中考数学模拟试卷(解析版) 题型:解答题

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1-x2|====
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>

科目:初中数学 来源:2013年4月中考数学模拟试卷(40)(解析版) 题型:解答题

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1-x2|====
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>

科目:初中数学 来源:2013年广东省中考数学模拟试卷(九)(解析版) 题型:解答题

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1-x2|====
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>


同步练习册答案