精英家教网 > 初中数学 > 题目详情
若x=a、y=b是方程2x+y=0的一个解,且(a≠0),则a×b的符号是(  )
A.正号
B.负号
C.可能是正号,也可能是负号
D.即不是正号,也不是负号
相关习题

科目:初中数学 来源: 题型:

8、若x=a、y=b是方程2x+y=0的一个解,且(a≠0),则a×b的符号是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若x=a、y=b是方程2x+y=0的一个解,且(a≠0),则a×b的符号是(  )
A.正号
B.负号
C.可能是正号,也可能是负号
D.即不是正号,也不是负号

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若x=a、y=b是方程2x+y=0的一个解,且(a≠0),则a×b的符号是


  1. A.
    正号
  2. B.
    负号
  3. C.
    可能是正号,也可能是负号
  4. D.
    即不是正号,也不是负号

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+2|+(b-1)2=0.

(1)求线段AB的长;
(2)点C在数轴上对应的数为x,且x是方程2x-1=
12
x+2的解,在数轴上是否存在点P,使PA+PB=PC,若存在,直接写出点P对应的数;若不存在,说明理由;
(3)在(1)的条件下,将点B向右平移5个单位长度至点B’,此时在原点O处放一挡板,一小球甲从点A处以1个单位长度/秒的速度向左运动;同时另一小球乙从点B’处以2个单位长度/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),求甲、乙两小球到原点的距离相等时经历的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+2|+(b-1)2=0.

(1)求线段AB的长;
(2)点C在数轴上对应的数为x,且x是方程2x-1=数学公式x+2的解,在数轴上是否存在点P,使PA+PB=PC,若存在,直接写出点P对应的数;若不存在,说明理由;
(3)在(1)的条件下,将点B向右平移5个单位长度至点B’,此时在原点O处放一挡板,一小球甲从点A处以1个单位长度/秒的速度向左运动;同时另一小球乙从点B’处以2个单位长度/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),求甲、乙两小球到原点的距离相等时经历的时间.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+2|+(b-1)2=0.

(1)求线段AB的长;
(2)点C在数轴上对应的数为x,且x是方程2x-1=
1
2
x+2的解,在数轴上是否存在点P,使PA+PB=PC,若存在,直接写出点P对应的数;若不存在,说明理由;
(3)在(1)的条件下,将点B向右平移5个单位长度至点B’,此时在原点O处放一挡板,一小球甲从点A处以1个单位长度/秒的速度向左运动;同时另一小球乙从点B’处以2个单位长度/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),求甲、乙两小球到原点的距离相等时经历的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线数学公式与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年江西省抚州市中考数学模拟试卷(二)(解析版) 题型:解答题

已知抛物线与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年山东省济南市中考数学模拟试卷(十一)(解析版) 题型:解答题

已知抛物线与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市顺义区中考数学模拟试卷(解析版) 题型:解答题

已知抛物线与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案