精英家教网 > 初中数学 > 题目详情
计算
1
6
×(-6)÷(-
1
6
)×6的值为(  )
A.1B.36C.-1D.+6
相关习题

科目:初中数学 来源: 题型:

计算
1
6
×(-6)÷(-
1
6
)×6的值为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

计算
1
6
×(-6)÷(-
1
6
)×6的值为(  )
A.1B.36C.-1D.+6

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读第(1)题的解答过程,然后再解第(2)题.
(1)已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则:2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=
1
2
m=
1
2
,∴m=
1
2

解法二:设2x3-x2+m=A•(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取x=-
1
2

(-
1
2
)3-(-
1
2
)2+m
=0,故 m=
1
2

(2)已知x4+mx3+nx-16有因式(x-1)和(x-2),求m、n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

为了求1+2+22+…+22009的值,可令s=1+2+22+…+22009,则2s=2+22+23+24+…+22010,因此2s-s=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理计算出1+7+72+73+…72010的值(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

为了求1+2+22+…+22009的值,可令s=1+2+22+…+22009,则2s=2+22+23+24+…+22010,因此2s-s=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理计算出1+7+72+73+…72010的值(  )
A.72010-1B.72011-1C.
72010-1
6
D.
72011-1
6

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面学习材料:
已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得:
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=0.5
m=0.5
,所以m=0.5
解法二:设2x3-x2+m=A(2x+1)(A为整式).由于上式为恒等式,为了方便计算,取x=-0.5,
得2×(-0.5)3-0.52+m=0,解得m=0.5
根据上面学习材料,解答下面问题:
已知多项式x4+mx3+nx-16有因式x-1和x-2,试用两种方法求m、n的值.
解法1:
解法2:

查看答案和解析>>

科目:初中数学 来源: 题型:

有两个有理数a、b(b≠0),规定一种新的运算“*”:a*b=a+
1
b

例如:1*2=1+
1
2
=
3
2
2*3=2+
1
3
=
7
3
-3*6=-3+
1
6
=-
17
6

(1)请仿照上例计算下列各题:①3*5;②-4*3;③(1*2)*3;④1*(2*3);
(2)通过计算,请回答:
①“*”运算是否满足(m*n)*x=m*(n*x);
②当m、n为何值时,满足m*n=n*m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有两个有理数a、b(b≠0),规定一种新的运算“*”:a*b=a+
1
b

例如:1*2=1+
1
2
=
3
2
2*3=2+
1
3
=
7
3
-3*6=-3+
1
6
=-
17
6

(1)请仿照上例计算下列各题:①3*5;②-4*3;③(1*2)*3;④1*(2*3);
(2)通过计算,请回答:
①“*”运算是否满足(m*n)*x=m*(n*x);
②当m、n为何值时,满足m*n=n*m.

查看答案和解析>>


同步练习册答案