精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是(  )
A.y1<y2<y3B.y1>y2>y3C.y1>y2>y3D.y2>y3>y1
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为精英家教网S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

48、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①abc<0;②当x=1时,函数有最大值.③当x=-1或x=3时,函数y的值都等于0.④4a+2b+c<0其中正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

6、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:
①因为a>0,所以函数y有最大值;
②该函数的图象关于直线x=-1对称;
③当x=-2时,函数y的值等于0;
④当x=-3或x=1时,函数y的值都等于0.
其中正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c中,当x=0时,y=-2,且b的平方等于a与c的乘积,则函数值有(  )
A、最大值-1.5B、最小值-1.5C、最大值-2.5D、最小值-2.5

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象经过O(0,0),M(1,1)和N(n,0)
(n≠0)三点.
(1)若该函数图象顶点恰为M点,写出此时n的值及y的最大值;
(2)当n=-2时,确定这个二次函数的解析式,并判断此时y是否有最大值;
(3)由(1)、(2)可知,n的取值变化,会影响该函数图象的开口方向.请求出n满足什么条件时,y有最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y=ax2+bx+c,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

7、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①abc>0.②当x=1时,函数有最大值.③当x=-1或x=3时,函数y的值都等于0.④4a+2b+c<0.其中正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c,当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:
x -4 -3 -2 -1 0 1 2 3 4 5 6
y 24 15 8 3 0 -1 0 3 8 15  
(1)观察表中数据,当x=6时,y的值是
 

(2)这个二次函数与x轴的交点坐标是
 

(3)代数式
-b+
b2-4ac
2a
+
-b-
b2-4ac
2a
+(a+b+c)(a-b+c)的值是
 

(4)若s、t是两个不相等的实数,当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,那么经过点(s+1,t+1)的反比例函数解析式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图,给出以下结论,其中正确的结论的个数是(  )
①abc<2;②当x=1时,函数有最大值;③当x=-1或x=3时,函数y的值都等于0;④4a+2b+c<0.

查看答案和解析>>


同步练习册答案