精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的右焦点为F,?为右准线,过F作椭圆的弦AB,以AB为直径的圆与?的关系(  )
A.相交B.相切C.相离D.不确定
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,下顶点为A,直线AF与椭圆的另一交点为B,点B关于x轴的对称点为C,若四边形OACB为平行四边形(O为坐标原点),则椭圆的离心率等于(  )
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,右准线与x轴交于E点,若椭圆的离心率e=
2
2
,且|EF|=1.
(1)求a,b的值;
(2)若过F的直线交椭圆于A,B两点,且
OA
+
OB
与向量
m
=(4,-
2
)
共线(其中O为坐标原点),求
OA
OB
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,点E(
a2
c
,0)
在x轴上,若椭圆的离心率e=
2
2
,且|EF|=1.
(1)求a,b的值;
(2)若过F的直线交椭圆于A,B两点,且
OA
+
OB
与向量
m
=(4,-
2
)
共线(其中O为坐标原点),求证:
OA
OB
的夹角为
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F1,且A是椭圆上的一点,O为坐标原点,若三角形OAF1为等边三角形,则椭圆的离心率(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F(1,0),离心率为e.
(1)若e=
2
2
,求椭圆方程;
(2)设直线y=kx(k>0)与椭圆相交于A,B两点,M,N分别为线段AF,BF的中点,若坐标原点O在以MN为直径的圆上.
(i)将k表示成e的函数;
(ii)当e∈(
2
2
3
2
]
时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,P点在椭圆上,以P点为圆心的圆与y轴相切,且同时与x轴相切于椭圆的右焦点F,则椭圆
y2
a2
+
x2
b2
=1
的离心率为
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的右焦点为F,?为右准线,过F作椭圆的弦AB,以AB为直径的圆与?的关系(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(c,0),过F作与x轴垂直的直线与椭圆相交于点P,过点P的椭圆的切线l与x轴相交于点A,则点A的坐标为
(
a2
c
,0)
(
a2
c
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若线段AB的中点坐标为(1,-1),则椭圆的方程为
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,点E(
a2
c
,0)
在x轴上,若椭圆的离心率e=
2
2
,且|EF|=1.
(1)求a,b的值;
(2)若过F的直线交椭圆于A,B两点,且
OA
+
OB
与向量
m
=(4,-
2
)
共线(其中O为坐标原点),求证:
OA
OB
的夹角为
π
2

查看答案和解析>>


同步练习册答案