精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)?lnxx,则f(2)与f(e)?ln2的大小关系是(  )
A.f(2)>f(e)?ln2B.f(2)=f(e)?ln2C.f(2)<f(e)?ln2D.不能确定
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的可导函数,若函数F(x)=xf(x),满足F'(x)>0对x∈R恒成立,则下面四个结论中,所有正确结论的序号是(  )
①f(1)+f(-1)>0;  
②f(x)≥0对x∈R成立;
③f(x)可能是奇函数; 
④f(x)一定没有极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,则f(2)与f(e)•ln2的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,则f(2)与f(e)•ln2的大小关系是(  )
A.f(2)>f(e)•ln2B.f(2)=f(e)•ln2C.f(2)<f(e)•ln2D.不能确定

查看答案和解析>>

科目:高中数学 来源:2011-2012学年黑龙江省鹤岗一中高二(下)期中数学试卷(理科)(解析版) 题型:选择题

已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,则f(2)与f(e)•ln2的大小关系是( )
A.f(2)>f(e)•ln2
B.f(2)=f(e)•ln2
C.f(2)<f(e)•ln2
D.不能确定

查看答案和解析>>

科目:高中数学 来源:2010年河南省洛阳市宜阳实验高中高考数学预测试卷2(理科)(解析版) 题型:选择题

已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,则f(2)与f(e)•ln2的大小关系是( )
A.f(2)>f(e)•ln2
B.f(2)=f(e)•ln2
C.f(2)<f(e)•ln2
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,则f(2)与f(e)•ln2的大小关系是


  1. A.
    f(2)>f(e)•ln2
  2. B.
    f(2)=f(e)•ln2
  3. C.
    f(2)<f(e)•ln2
  4. D.
    不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)是定义在R上的可导函数,其导函数记为f′(x),若对于任意实数x,有f(x)>f′(x),且y=f(x)-1为奇函数,则不等式f(x)<ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,e4D.(e4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

12、定义在R上的可导函数f(x),已知y=ef'(x)的图象如图所示,则y=f(x)的增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

3、已知函数y=f(x)是定义在R上的可导函数,y=f′(x)是y=f(x)的导函数,命题p:f′(x0)=0;命题q:y=f(x)在x=x0处取得极值,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,则以下各式正确的是(  )

查看答案和解析>>


同步练习册答案