精英家教网 > 高中数学 > 题目详情
函数y=ax3+x+3有极值,则a的取值范围为(  )
A.a>0B.a≥0C.a<0D.a≤0
相关习题

科目:高中数学 来源: 题型:

函数y=ax3+x+3有极值,则a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=ax3+x+3有极值,则a的取值范围为(  )
A.a>0B.a≥0C.a<0D.a≤0

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省威海市高二(上)期末数学试卷(文科)(解析版) 题型:选择题

函数y=ax3+x+3有极值,则a的取值范围为( )
A.a>0
B.a≥0
C.a<0
D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数y=ax3+x+3有极值,则a的取值范围为


  1. A.
    a>0
  2. B.
    a≥0
  3. C.
    a<0
  4. D.
    a≤0

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=alnx-ax-3(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3+x2[f/(x)+
m
2
]
在区间(t,3)上有最值,求实数m取值范围;
(3)求证:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
(文科) 已知函数f(x)=ax3+
1
2
x2-2x+c

(1)若x=-1是f(x)的极值点且f(x)的图象过原点,求f(x)的极值;
(2)若g(x)=
1
2
bx2-x+d
,在(1)的条件下,是否存在实数b,使得函数g(x)的图象与函数f(x)的图象恒有含x=-1的三个不同交点?若存在,求出实数b的取值范围;否则说明理由.

查看答案和解析>>


同步练习册答案