精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)与g(x),对任意x都有f(x)+f(-x)=0与g(x)=g(x+4)成立.已知f(-2)=g(-2)=6,且f(f(2)+g(2))+g(f(-2)+g(-2))=-2+2g(4),则g(0)=(  )
A.2B.1C.0D.-1
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)与g(x),对任意x都有f(x)+f(-x)=0与g(x)=g(x+4)成立.已知f(-2)=g(-2)=6,且f(f(2)+g(2))+g(f(-2)+g(-2))=-2+2g(4),则g(0)=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)与g(x),对任意x都有f(x)+f(-x)=0与g(x)=g(x+4)成立.已知f(-2)=g(-2)=6,且f(f(2)+g(2))+g(f(-2)+g(-2))=-2+2g(4),则g(0)=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源:2012年四川省绵阳市培城区南山中学高考数学三模试卷(文科)(解析版) 题型:选择题

定义在R上的函数f(x)与g(x),对任意x都有f(x)+f(-x)=0与g(x)=g(x+4)成立.已知f(-2)=g(-2)=6,且f(f(2)+g(2))+g(f(-2)+g(-2))=-2+2g(4),则g(0)=( )
A.2
B.1
C.0
D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)、g(x)都有反函数,又f(x-1)与g-1(x-3)的图象关于直线y=x对称,若g(5)=2009,则f(4)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)、g(x)均有反函数,且f(x+1)与g-1(x-2)的图象关于y=x对称,若g(15)=2009,则f(16)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)和g(x)的导函数分别为f′(x),g′(x),则下面结论正确的是(  )
①若f′(x)>g′(x),则函数f(x)的图象在函数g(x)的图象上方;
②若函数f′(x)与g′(x)的图象关于直线x=a对称,则函数f(x)与g(x)的图象关于点(a,0)对称;
③函数f(x)=f(a-x),则f′(x)=-f′(a-x);
④若f′(x)是增函数,则f(
x1+x2
2
)≤
f(x1)+f(x2)
2
A、①②B、①②③
C、③④D、②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)、g(x)都有反函数,又f(x-1)与g-1(x-3)的图象关于直线y=x对称,若g(5)=2009,则f(4)=(  )
A.2009B.2010C.2011D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在R上的函数f(x)、g(x)都有反函数,又f(x-1)与g-1(x-3)的图象关于直线y=x对称,若g(5)=2009,则f(4)=


  1. A.
    2009
  2. B.
    2010
  3. C.
    2011
  4. D.
    2012

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在R上的函数f(x)、g(x)均有反函数,且f(x+1)与g-1(x-2)的图象关于y=x对称,若g(15)=2009,则f(16)的值为


  1. A.
    2012
  2. B.
    2011
  3. C.
    2010
  4. D.
    2009

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=lnx-
mx
,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>


同步练习册答案