精英家教网 > 高中数学 > 题目详情
将函数y=3x的图象向左平移一个单位得到图象C1,将C1向上平移一个单位得到C2,再作C2关于直线y=x的对称图象C3,则C3的解析式为(  )
A.y=log3(x+1)+1B.y=log3(x-1)-1
C.y=log3(x+1)-1D.y=log3(x-1)+1
相关习题

科目:高中数学 来源: 题型:

6、将函数y=3x的图象向左平移一个单位得到图象C1,将C1向上平移一个单位得到C2,再作C2关于直线y=x的对称图象C3,则C3的解析式为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将函数y=3x的图象向左平移一个单位得到图象C1,将C1向上平移一个单位得到C2,再作C2关于直线y=x的对称图象C3,则C3的解析式为(  )
A.y=log3(x+1)+1B.y=log3(x-1)-1
C.y=log3(x+1)-1D.y=log3(x-1)+1

查看答案和解析>>

科目:高中数学 来源:2006-2007学年北京师大附中高一(上)期末数学试卷(解析版) 题型:选择题

将函数y=3x的图象向左平移一个单位得到图象C1,将C1向上平移一个单位得到C2,再作C2关于直线y=x的对称图象C3,则C3的解析式为( )
A.y=log3(x+1)+1
B.y=log3(x-1)-1
C.y=log3(x+1)-1
D.y=log3(x-1)+1

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

将函数y=3x的图象向左平移一个单位得到图象C1,将C1向上平移一个单位得到C2,再作C2关于直线y=x的对称图象C3,则C3的解析式为


  1. A.
    y=log3(x+1)+1
  2. B.
    y=log3(x-1)-1
  3. C.
    y=log3(x+1)-1
  4. D.
    y=log3(x-1)+1

查看答案和解析>>

科目:高中数学 来源:四川省成都外国语学校2011-2012学年高三2月月考(数学文). 题型:填空题

 给出下列四个命题:

①“向量,的夹角为锐角”的充要条件是“·>0”;

②如果f(x)=x,则对任意的x1x2Î(0,+¥),且x1¹x2,都有f()>;

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)−g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2−3x+4与g(x)=2x−3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];

④记函数y=f(x)的反函数为y=f −1(x),要得到y=f −1(1−x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f −1(1−x)的图象.其中真命题的序号是            。(请写出所有真命题的序号)

 

查看答案和解析>>

科目:高中数学 来源:四川省成都外国语学校2011-2012学年高三2月月考(数学理) 题型:填空题

 给出下列四个命题:

①“向量,的夹角为锐角”的充要条件是“·>0”;

②如果f(x)=x,则对任意的x1x2Î(0,+¥),且x1¹x2,都有f()>;

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)−g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2−3x+4与g(x)=2x−3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];

④记函数y=f(x)的反函数为y=f −1(x),要得到y=f −1(1−x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f −1(1−x)的图象.其中真命题的序号是            。(请写出所有真命题的序号)

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①“向量的夹角为锐角”的充要条件是“·>0”;
②如果f(x)=lgx,则对任意的x1、x2Î(0,+¥),且x1¹x2,都有f()>
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)?g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2?3x+4与g(x)=2x?3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f?1(x),要得到y=f?1(1?x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f?1(1?x)的图象.其中真命题的序号是           。(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:四川省月考题 题型:填空题

给出下列四个命题:
①“向量的夹角为锐角”的充要条件是“>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”。若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象;
其中真命题的序号是(    )。(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年四川省眉山市仁寿一中高三(下)3月月考数学试卷(文理合卷)(解析版) 题型:填空题

给出下列四个命题:
①“向量的夹角为锐角”的充要条件是“>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f()>
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是    .(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①“向量
a
b
的夹角为锐角”的充要条件是“
a
b
>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是
 
.(请写出所有真命题的序号)

查看答案和解析>>


同步练习册答案