精英家教网 > 高中数学 > 题目详情
函数y=f(x)对于任意x、y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4,则(  )
A.f(x)在R上是减函数,且f(1)=3
B.f(x)在R上是增函数,且f(1)=3
C.f(x)在R上是减函数,且f(1)=2
D.f(x)在R上是增函数,且f(1)=2
相关习题

科目:高中数学 来源: 题型:

6、函数y=f(x)对于任意x、y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4,则(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=f(x)对于任意x、y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4,则(  )
A.f(x)在R上是减函数,且f(1)=3
B.f(x)在R上是增函数,且f(1)=3
C.f(x)在R上是减函数,且f(1)=2
D.f(x)在R上是增函数,且f(1)=2

查看答案和解析>>

科目:高中数学 来源:2011年《龙门亮剑》高三数学(文科)一轮复习:第2章第2节(人教AB通用)(解析版) 题型:选择题

函数y=f(x)对于任意x、y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4,则( )
A.f(x)在R上是减函数,且f(1)=3
B.f(x)在R上是增函数,且f(1)=3
C.f(x)在R上是减函数,且f(1)=2
D.f(x)在R上是增函数,且f(1)=2

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数y=f(x)对于任意x、y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4,则


  1. A.
    f(x)在R上是减函数,且f(1)=3
  2. B.
    f(x)在R上是增函数,且f(1)=3
  3. C.
    f(x)在R上是减函数,且f(1)=2
  4. D.
    f(x)在R上是增函数,且f(1)=2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x),(x∈R*)对于任意实数x1、x2∈R*,都满足f(x1x2)=f(x1)+f(x2),且当x>1时,f(x)>0且f(4)=1
(1)求证:f(1)=0
(2)求f(
116
)
的值
(3)解不等式f(x)+f(x-3)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R,对于给定的正数k,定义函数fk(x)=
f(x),(f(x)≤k)
k,(f(x)>k)
,给出函数f(x)=-x2+4x-2,若对任意的x∈R,恒有fk(x)=f(x),则(  )
A、k的最大值为2
B、k的最小值为2
C、k的最大值为1
D、k的最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数y=f(x),(x∈R*)对于任意实数x1、x2∈R*,都满足f(x1x2)=f(x1)+f(x2),且当x>1时,f(x)>0且f(4)=1
(1)求证:f(1)=0
(2)求数学公式的值
(3)解不等式f(x)+f(x-3)≤1.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆外国语学校高三(上)开学数学试卷(理科)(解析版) 题型:解答题

设函数y=f(x),(x∈R*)对于任意实数x1、x2∈R*,都满足f(x1x2)=f(x1)+f(x2),且当x>1时,f(x)>0且f(4)=1
(1)求证:f(1)=0
(2)求的值
(3)解不等式f(x)+f(x-3)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网对于任意的实数a,b,记max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函数  y=f(x)(x∈R)是奇函数,且当x≥0时,f(x)=(x-1)2-2;函数y=g(x)(x∈R)是正比例函数,其图象与x≥0时函数y=f(x)的图象如图所示,则下列关于函数y=F(x)的说法中,正确的是(  )
A、y=F(x)为奇函数
B、y=F(x)在(-3,0)上为增函数
C、y=F(x)的最小值为-2,最大值为2
D、以上说法都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=f(x)是定义在R上的函数,给定下列三个条件:
(1)y=f(x)是偶函数;
(2)y=f(x)的图象关于直线x=1对称;
(3)T=2为y=f(x)的一个周期.
如果将上面(1)、(2)、(3)中的任意两个作为条件,余下一个作为结论,那么构成的三个命题中真命题的个数有
3
3
个.

查看答案和解析>>


同步练习册答案