精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-x3,对区间(0,1]上的任意两个值x1、x2,当x1<x2时总有f(x2)-f(x1)>x2-x1成立,则a的取值范围是(  )
A.[4,+∞)B.(0,4)C.(1,4)D.(0,1)
相关习题

科目:高中数学 来源: 题型:

8、已知函数f(x)=ax-x3,对区间(0,1]上的任意两个值x1、x2,当x1<x2时总有f(x2)-f(x1)>x2-x1成立,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第三次月考数学试卷(文科)(解析版) 题型:选择题

已知函数f(x)=ax-x3,对区间(0,1]上的任意两个值x1、x2,当x1<x2时总有f(x2)-f(x1)>x2-x1成立,则a的取值范围是( )
A.[4,+∞)
B.(0,4)
C.(1,4)
D.(0,1)

查看答案和解析>>

科目:高中数学 来源:2011年海南省嘉积中学高三质量监测数学试卷3(文科)(解析版) 题型:选择题

已知函数f(x)=ax-x3,对区间(0,1]上的任意两个值x1、x2,当x1<x2时总有f(x2)-f(x1)>x2-x1成立,则a的取值范围是( )
A.[4,+∞)
B.(0,4)
C.(1,4)
D.(0,1)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省琼海市嘉积中学高三(上)期末数学试卷3(理科)(解析版) 题型:选择题

已知函数f(x)=ax-x3,对区间(0,1]上的任意两个值x1、x2,当x1<x2时总有f(x2)-f(x1)>x2-x1成立,则a的取值范围是( )
A.[4,+∞)
B.(0,4)
C.(1,4)
D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ax-x3,对区间(0,1]上的任意两个值x1、x2,当x1<x2时总有f(x2)-f(x1)>x2-x1成立,则a的取值范围是(  )
A.[4,+∞)B.(0,4)C.(1,4)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x)=ax-x3,对区间(0,1]上的任意两个值x1、x2,当x1<x2时总有f(x2)-f(x1)>x2-x1成立,则a的取值范围是


  1. A.
    [4,+∞)
  2. B.
    (0,4)
  3. C.
    (1,4)
  4. D.
    (0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax-3(a≠0),
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对于任意的a∈[1,2],若函数g(x)=x3+
x2
2
[m-2f′(x)]
在区间(a,3)上有最值,求实数m的取值范围;
(Ⅲ)求证:ln(
1
22
+1)+ln(
1
32
+1)+ln(
1
42
+1)+…+ln(
1
n2
+1)<1(n≥2,n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3ax-1的导函数为f(x),g(x)=f(x)-ax-3.
(1)当a=-2时,求函数f(x)的单调区间;
(2)若对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(3)若x•g(x)+lnx>0对一切x≥2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R)
(1)求f(x)的单调区间;
(2)若函数f(x)的图象在点(2,f)处切线的倾斜角为45°,且对于任意的t∈[1,2],函数g(x)=x3+x2(f(x)+
m2
)
在区间(t,3)上总不为单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间并比较f(x)与f(1)的大小关系
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+
m2
]
在区间(t,3)上总不是单调函数,求m的取值范围.

查看答案和解析>>


同步练习册答案