精英家教网 > 高中数学 > 题目详情
现有命题p、q,若命题m为“p且q”,则“非p或非q”是非m的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
相关习题

科目:高中数学 来源: 题型:

4、现有命题p、q,若命题m为“p且q”,则“非p或非q”是非m的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

现有命题p、q,若命题m为“p且q”,则“非p或非q”是非m的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:1.3 简单的逻辑联结词、全称量词与存在量词(解析版) 题型:选择题

现有命题p、q,若命题m为“p且q”,则“非p或非q”是非m的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2010年新教材高考数学模拟题详解精编试卷(4)(解析版) 题型:选择题

现有命题p、q,若命题m为“p且q”,则“非p或非q”是非m的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

现有命题p、q,若命题m为“p且q”,则“非p或非q”是非m的


  1. A.
    充分而不必要条件
  2. B.
    必要而不充分条件
  3. C.
    充要条件
  4. D.
    既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16
3
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
16
3
,求侧棱长”;也可以是“若正四棱锥的体积为
16
3
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
p
2
,0)
的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积数学公式后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为数学公式,求侧棱长”;也可以是“若正四棱锥的体积为数学公式,求所有侧面面积之和的最小值”.
现有正确命题:过点数学公式的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16
3
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
16
3
,求侧棱长”;也可以是“若正四棱锥的体积为
16
3
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
p
2
,0)
的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>


同步练习册答案