精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为R,它的反函数为f-1(x),如果f-1(x+a)与f(x+a)互为反函数,且f(a)=a(a≠0),则f(2a)的值为(  )
A.-aB.0C.aD.2a
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,对任意实数m,n都有f(m+n)=f(m)+f(n)+
1
2
,且f(
1
2
)=0
,当x>
1
2
时,f(x)>0.
(1)求f(1);
(2)求和f(1)+f(2)+…+f(n)(n∈N*);
(3)判断函数f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知函数f(x)的定义域为R,若f(x)恒不等于零,且对任意的实数x,y都有f(x+y)+f(x-y)=2f(x)•f(y),
(1)求证f(0)=1.
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=
1
2
x
,求使f(x)=-
1
2
在[0,2010]上的所有x的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、已知函数f(x)的定义域为R,且对于任意x∈R,都有f(x)=f(-x)及f(x+4)=f(x)+f(2)成立.当x1、x2∈[0,2]且x1≠x2时,都有[f(x1)-f(x2)](x1-x2)>0成立.现给出下列四个结论:
①f(2)=0;②函数f(x)在区间[-6,-4]上为增函数;③直线x=-4是函数f(x)的一条对称轴;④方程f(x)=0在区间[-6,6]上有4个不同的实根.
其中正确命题的序号是
①③④
. (把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知函数f(x)的定义域为R,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.
(Ⅰ)求证:函数f(x)为奇函数;
(Ⅱ)求证:f(nx)=nf(x),n∈N*
(Ⅲ)求函数f(x)在区间[-n,n](n∈N*)上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)+f(x2),
当x<0时,f(x)<0.
(1)判断f(x)的单调性;
(2)判断f(x)的奇偶性;
(3)是否存在这样的实数m,当θ∈[0,
π2
]时
,使不等式f[cos2θ-(2+m)sinθ]+f(3+2m)>0对所有θ恒成立,若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

9、已知函数f(x)的定义域为R,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,f(-2)=1,f(3)=1,则不等式f(x)>1的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x<0时,f(x)<0.
(1)判断并证明f(x)的单调性和奇偶性
(2)是否存在这样的实数m,当θ∈[0,
π
2
]
时,使不等式f[sin2θ-(2+m)(sinθ+cosθ)-
4
sinθ+cosθ
]+f(3+2m)>0

对所有θ恒成立,如存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|<m|x|,则称f(x)为F函数.给出下列函数:
①f(x)=x2
②f(x)=sinx+cosx;
f(x)=
x
x2+x+1

④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的序号为(  )
A、②④B、①③C、③④D、①②

查看答案和解析>>


同步练习册答案