精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x、y,等式f(x)f(y)=f(x+y)恒成立,若数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),则a2011的值为(  )
A.4017B.4018C.4019D.4021
相关习题

科目:高中数学 来源: 题型:

13、已知函数y=f(x)的定义域为R,值域为[1,2],求y=f(x+1)的值域
[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)成立.若数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),则a2009的值为(  )
A、4016B、4017
C、4018D、4019

查看答案和解析>>

科目:高中数学 来源: 题型:

21、已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3.
(1)试证明:函数y=f(x)是R上的单调减函数;
(2)试证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)恒成立.若数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*)
,则a2010的值为(  )
A、4016B、4017
C、4018D、4019

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,且对于任意x1,x2∈R,存在正实数L,使得|f(x1)-f(x2)|≤L|x1-x2|都成立.
(1)若f(x)=
1+x2
,求L的取值范围;
(2)当0<L<1时,数列{an}满足an+1=f(an),n=1,2,….
①证明:
n
k=1
|ak-ak+1|≤
1
1-L
|a1-a2|

②令Ak=
a1+a2+…ak
k
(k=1,2,3,…)
,证明:
n
k=1
|Ak-Ak+1|≤
1
1-L
|a1-a2|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x、y,等式f(x)f(y)=f(x+y)恒成立,若数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),则a2011的值为(  )
A、4017B、4018
C、4019D、4021

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的x、y∈R,等式f(x)f(y)=f(x+y)恒成立.若数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),则a2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,对任意x,x′∈R,均有f(x+x′)=f(x)+f(x′),且对任意x>0都有f(x)<0,f(3)=-3.
(1)试证明:函数y=f(x)在R上是单调函数;
(2)判断y=f(x)的奇偶性,并证明.
(3)解不等式f(x+3)+f(4x)≤2.
(4)试求函数y=f(x)在[m,n](mn<0且m,n∈R)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,满足(x-2)f′(x)>0,且函数y=f(x+2)为偶函数,a=f(2),b=f(log23),c=f(2
5
),则实数a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 y=f (x) 的定义域为 R,其导数 f′(x) 满足 0<f′(x)<1,常数 α 为方程 f (x)=x的实数根.
(1)求证:当 x>α 时,总有 x>f (x) 成立;
(2)对任意 x1、x2若满足|x1-α|<1,|x2-α|<1,求证:|f (x1)-f (x2)|<2.

查看答案和解析>>


同步练习册答案