精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)对?x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1-x)<0的解集为(  )
A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)
相关习题

科目:高中数学 来源: 题型:

10、定义在R上的函数f(x)对?x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1-x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)对?x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1-x)<0的解集为(  )
A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省德州市乐陵一中高三(上)期末数学复习训练试卷4(解析版) 题型:选择题

定义在R上的函数f(x)对?x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1-x)<0的解集为( )
A.(1,+∞)
B.(0,+∞)
C.(-∞,0)
D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省巢湖市高三(上)质量检测数学试卷(文科)(解析版) 题型:选择题

定义在R上的函数f(x)对?x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1-x)<0的解集为( )
A.(1,+∞)
B.(0,+∞)
C.(-∞,0)
D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在R上的函数f(x)对?x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1-x)<0的解集为


  1. A.
    (1,+∞)
  2. B.
    (0,+∞)
  3. C.
    (-∞,0)
  4. D.
    (-∞,1)

查看答案和解析>>

科目:高中数学 来源:山东省期末题 题型:单选题

定义在R上的函数f(x)对x1,x2∈R,都有(x1﹣x2)[f(x1)﹣f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1﹣x)<0的解集为
[     ]
A.(1,+∞)
B.(0,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)对任意两个不等的实数x1,x2,总有
f(x1)-f(x2)x1-x2
>0成立,且f(-3)=a,f(-1)=b,则f(x)在上[-3,-1]的最大值是
b
b

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)对任意两个不相等实数x1、x2,总有
f(x1)-f(x2)
x1-x2
>0
成立,则必有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.
(1)求证:f(x)-1为奇函数;
(2)求证:f(x)是R上的增函数;
(3)若f(4)=5,解不等式f(3m2-m-2)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f (x)满足:如果对任意x1,x2∈R,都有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]
,则称函数f (x)是R上的凹函数,已知二次函数f(x)=ax2+x(a∈R,a≠0),
(1)当a=1时,试判断函数f (x)是否为凹函数,并说明理由;
(2)如果函数f (x)对任意的x∈[0,1]时,都有|f(x)|≤1,试求实数a的范围.

查看答案和解析>>


同步练习册答案