精英家教网 > 高中数学 > 题目详情
设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若a1=
1
2
an=f(n)(n∈N*)
,且b1=1,bn=g(n)(n∈N*),则数列{anbn}的前n项和为Sn为(  )
A.
n(n+1)
2
B.n+1-
1
2n
C.
3n
2
D.2-
n+2
2n
相关习题

科目:高中数学 来源: 题型:

设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有(  )
A、f(x)g(x)>f(b)g(b)B、f(x)g(a)>f(a)g(x)C、f(x)g(b)>f(b)g(x)D、f(x)g(x)>f(a)g(a)

查看答案和解析>>

科目:高中数学 来源:东城区一模 题型:单选题

设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有(  )
A.f(x)g(x)>f(b)g(b)B.f(x)g(a)>f(a)g(x)C.f(x)g(b)>f(b)g(x)D.f(x)g(x)>f(a)g(a)

查看答案和解析>>

科目:高中数学 来源:安徽模拟 题型:单选题

设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若a1=
1
2
an=f(n)(n∈N*)
,且b1=1,bn=g(n)(n∈N*),则数列{anbn}的前n项和为Sn为(  )
A.
n(n+1)
2
B.n+1-
1
2n
C.
3n
2
D.2-
n+2
2n

查看答案和解析>>

科目:高中数学 来源:2007-2008学年湖北省宜昌一中高三数学单元测试:数学归纳法、极限、导数(解析版) 题型:选择题

设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有( )
A.f(x)g(x)>f(b)g(b)
B.f(x)g(a)>f(a)g(x)
C.f(x)g(b)>f(b)g(x)
D.f(x)g(x)>f(a)g(a)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省宁波市鄞州高级中学高二(上)期末数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有( )
A.f(x)g(x)>f(b)g(b)
B.f(x)g(a)>f(a)g(x)
C.f(x)g(b)>f(b)g(x)
D.f(x)g(x)>f(a)g(a)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省龙岩市永定一中高二(下)第一次段考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有( )
A.f(x)g(x)>f(b)g(b)
B.f(x)g(a)>f(a)g(x)
C.f(x)g(b)>f(b)g(x)
D.f(x)g(x)>f(a)g(a)

查看答案和解析>>

科目:高中数学 来源:2010年广东省茂名一中高考数学二模试卷(解析版) 题型:选择题

设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有( )
A.f(x)g(x)>f(b)g(b)
B.f(x)g(a)>f(a)g(x)
C.f(x)g(b)>f(b)g(x)
D.f(x)g(x)>f(a)g(a)

查看答案和解析>>

科目:高中数学 来源:《数列》2013年广东省广州大学附中高考数学二轮复习检测(解析版) 题型:选择题

设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若,且,则数列{anbn}的前n项和为Sn为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省省城名校高三第四次联考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若,且,则数列{anbn}的前n项和为Sn为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若数学公式,且数学公式,则数列{anbn}的前n项和为Sn


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>


同步练习册答案