精英家教网 > 高中数学 > 题目详情
我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:
1
y
?y′=g′(x)lnf(x)+g(x)?
1
f(x)
?f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)?
1
f(x)
?f′(x)],运用此方法求得函数y=x
1
x
的一个单调递增区间是(  )
A.(e,4)B.(3,6)C.(0,e)D.(2,3)
相关习题

科目:高中数学 来源:葫芦岛模拟 题型:单选题

我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:
1
y
•y′=g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x)],运用此方法求得函数y=x
1
x
的一个单调递增区间是(  )
A.(e,4)B.(3,6)C.(0,e)D.(2,3)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省宣城市旌德中学高三(上)第三次月考数学试卷(理科)(解析版) 题型:选择题

我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:•y′=g′(x)lnf(x)+g(x)••f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)••f′(x)],运用此方法求得函数y=的一个单调递增区间是( )
A.(e,4)
B.(3,6)
C.(0,e)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省五校联盟高三(上)调研数学试卷(理科)(解析版) 题型:选择题

我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:•y′=g′(x)lnf(x)+g(x)••f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)••f′(x)],运用此方法求得函数y=的一个单调递增区间是( )
A.(e,4)
B.(3,6)
C.(0,e)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源:《推理与证明》2013年广东省广州大学附中高考数学二轮复习检测(解析版) 题型:选择题

我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:•y′=g′(x)lnf(x)+g(x)••f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)••f′(x)],运用此方法求得函数y=的一个单调递增区间是( )
A.(e,4)
B.(3,6)
C.(0,e)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源:2013年山东省实验中学高考数学二模试卷(理科)(解析版) 题型:选择题

我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:•y′=g′(x)lnf(x)+g(x)••f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)••f′(x)],运用此方法求得函数y=的一个单调递增区间是( )
A.(e,4)
B.(3,6)
C.(0,e)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源:2011-2012年辽宁省葫芦岛市高三第三次联考数学试卷(理科)(解析版) 题型:选择题

我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:•y′=g′(x)lnf(x)+g(x)••f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)••f′(x)],运用此方法求得函数y=的一个单调递增区间是( )
A.(e,4)
B.(3,6)
C.(0,e)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:数学公式•y′=g′(x)lnf(x)+g(x)•数学公式•f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)•数学公式•f′(x)],运用此方法求得函数y=数学公式的一个单调递增区间是


  1. A.
    (e,4)
  2. B.
    (3,6)
  3. C.
    (0,e)
  4. D.
    (2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导得到:
1
y
•y′=g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x)],运用此方法求得函数y=x
1
x
的一个单调递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)证明函数y=f(x)的图象关于点(a,-1)成中心对称图形;
(2)当x∈[a+1,a+2]时,求证:f(x)∈数学公式
(3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
(i)如果可以用上述方法构造出一个常数列{xn},求实数a的取值范围;
(ii)如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省无锡三中高三第一次质量检测数学试卷(解析版) 题型:解答题

已知函数
(1)证明函数y=f(x)的图象关于点(a,-1)成中心对称图形;
(2)当x∈[a+1,a+2]时,求证:f(x)∈
(3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
(i)如果可以用上述方法构造出一个常数列{xn},求实数a的取值范围;
(ii)如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值

查看答案和解析>>


同步练习册答案