精英家教网 > 高中数学 > 题目详情
曲线f(x)=xlnx在点P(1,0)处的切线与坐标轴围成的三角形的外接圆方程是(  )
A.(x+
1
2
2+(y+
1
2
2=
1
2
B.(x+
1
2
2+(y-
1
2
2=
1
2
C.(x-
1
2
2+(y+
1
2
2=
1
2
D.(x-
1
2
2+(y-
1
2
2=
1
2
相关习题

科目:高中数学 来源: 题型:

曲线f(x)=xlnx在点P(1,0)处的切线与坐标轴围成的三角形的外接圆方程是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线f(x)=xlnx在点P(1,0)处的切线与坐标轴围成的三角形的外接圆方程是(  )
A.(x+
1
2
2+(y+
1
2
2=
1
2
B.(x+
1
2
2+(y-
1
2
2=
1
2
C.(x-
1
2
2+(y+
1
2
2=
1
2
D.(x-
1
2
2+(y-
1
2
2=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

曲线f(x)=xlnx在点P(1,0)处的切线与坐标轴围成的三角形的外接圆方程是


  1. A.
    (x+数学公式2+(y+数学公式2=数学公式
  2. B.
    (x+数学公式2+(y-数学公式2=数学公式
  3. C.
    (x-数学公式2+(y+数学公式2=数学公式
  4. D.
    (x-数学公式2+(y-数学公式2=数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+数学公式(p≠0)上存在两个不同点关于直线y=x对称,求实数p的取值范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间数学公式上单调递减,在区间数学公式上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城一中(东校区)高三一轮复习综合检测数学试卷(理科)(解析版) 题型:选择题

曲线f(x)=xlnx在点P(1,0)处的切线与坐标轴围成的三角形的外接圆方程是( )
A.(x+2+(y+2=
B.(x+2+(y-2=
C.(x-2+(y+2=
D.(x-2+(y-2=

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区模拟)(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的取值范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

科目:高中数学 来源:2007年上海市徐汇区零陵中学高三3月综合练习数学试卷(五)(解析版) 题型:解答题

(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x(x≠3,保留4位有效数字),使得f(x)<0成立;
(2)在曲线上存在两个不同点关于直线y=x对称,求出其坐标;若曲线(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间上单调递减,在区间上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
2
x
上存在两个不同点关于直线y=x对称,求出其坐标;若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
1
16
a=
2
2
加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>


同步练习册答案