精英家教网 > 高中数学 > 题目详情
投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是(  )
A.
1
36
B.
1
12
C.
1
6
D.
1
2
相关习题

科目:高中数学 来源:2012-2013学年贵州省六高三第一次考理科数学试卷(解析版) 题型:选择题

投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为前效实验,若第二次面向上的点数小于第一次面向上的点数我们称其为后效实验,若两次面向上的点数相等我们称其为等效试验.那么一个人投掷该骰子两次后出现等效实验的概率是(  )

A.              B.               C.              D.

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为前效实验,若第二次面向上的点数小于第一次面向上的点数我们称其为后效实验,若两次面向上的点数相等我们称其为等效试验.那么一个人投掷该骰子两次后出现等效实验的概率是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:门头沟区一模 题型:单选题

投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是(  )
A.
1
36
B.
1
12
C.
1
6
D.
1
2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州省六校联盟高三(上)第一次联考数学试卷(文科)(解析版) 题型:选择题

投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2013年高考百天仿真冲刺数学试卷4(文科)(解析版) 题型:选择题

投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州省六校联盟高三第一次联考数学试卷(理科)(解析版) 题型:选择题

投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011年北京市门头沟区高考数学一模试卷(文科)(解析版) 题型:选择题

投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字)
(I)设随机变量η表示一次掷得的点数和,求η的分布列;
(II)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求Eξ•Dξ.

查看答案和解析>>


同步练习册答案