精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)必是偶函数;
(2)当f(0)=f(2)时,f(x)的图象关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最大值|a2-b|.
其中正确的命题序号是(  )
A.(3)B.(2)(3)C.(3)(4)D.(1)(2)(3)
相关习题

科目:高中数学 来源: 题型:

7、已知函数f(x)=|x2-2ax+b|(x∈R),给出下列四个命题:
①f(x)必是偶函数;
②当f(0)=f(2)时,f(x)的图象必关于x=1对称;
③若a2-b≤0,则f(x)在区间[a,+∞]上是增函数;
④f(x)有最大值|a2-b|.
其中所有真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)必是偶函数;
(2)当f(0)=f(2)时,f(x)的图象关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最大值|a2-b|.
其中正确的命题序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列四个命题:
①f(x)必是偶函数;
②当f(0)=f(2)时,f(x)的图象必关于x=1对称;
③若a2-b≤0,则f(x)在区间[a,+∞]上是增函数;
④f(x)有最大值|a2-b|.
其中所有真命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)必是偶函数;
(2)当f(0)=f(2)时,f(x)的图象关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最大值|a2-b|.
其中正确的命题序号是(  )
A.(3)B.(2)(3)C.(3)(4)D.(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源:南昌模拟 题型:填空题

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列四个命题:
①f(x)必是偶函数;
②当f(0)=f(2)时,f(x)的图象必关于x=1对称;
③若a2-b≤0,则f(x)在区间[a,+∞]上是增函数;
④f(x)有最大值|a2-b|.
其中所有真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省昆明市官渡二中高三(上)第二次段考数学试卷(理科)(解析版) 题型:填空题

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列四个命题:
①f(x)必是偶函数;
②当f(0)=f(2)时,f(x)的图象必关于x=1对称;
③若a2-b≤0,则f(x)在区间[a,+∞]上是增函数;
④f(x)有最大值|a2-b|.
其中所有真命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2008-2009学年黑龙江省双鸭山一中高三(上)期中数学试卷(文科)(解析版) 题型:填空题

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)不可能是偶函数;
(2)当f(0)=f(2)时,f(x)的图象必关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最小值b-a2
其中正确的命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市龙湾中学高三(上)开学数学试卷(文科)(解析版) 题型:选择题

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)必是偶函数;
(2)当f(0)=f(2)时,f(x)的图象关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最大值|a2-b|.
其中正确的命题序号是( )
A.(3)
B.(2)(3)
C.(3)(4)
D.(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源:2013-2014学年黑龙江省双鸭山一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)必是偶函数;
(2)当f(0)=f(2)时,f(x)的图象关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最大值|a2-b|.
其中正确的命题序号是( )
A.(3)
B.(2)(3)
C.(3)(4)
D.(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西省忻州市高一(上)期末数学试卷(A卷)(解析版) 题型:填空题

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列四个命题:
①f(x)必是偶函数;
②当f(0)=f(2)时,f(x)的图象必关于x=1对称;
③若a2-b≤0,则f(x)在区间[a,+∞]上是增函数;
④f(x)有最大值|a2-b|.
其中所有真命题的序号是   

查看答案和解析>>


同步练习册答案