精英家教网 > 高中数学 > 题目详情
奇函数f(x)满足对任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9则f(2011)+f(2012)+f(2013)的值为(  )
A.6B.7C.8D.0
相关习题

科目:高中数学 来源: 题型:

13、奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

7、奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

12、奇函数f(x)满足对任意x∈R都有f(x+2)=-f(x)成立,且f(1)=8,则f(2008)+f(2009)+f(2010)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)满足对任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9则f(2011)+f(2012)+f(2013)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)满足对任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9,则f(2011)+f(2012)+f(2013)的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)满足对任意x∈R都有f(x+2)=-f(x)成立,且f(1)=8,则f(2012)+f(2013)+f(2014)的值为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

奇函数f(x)满足对任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9则f(2011)+f(2012)+f(2013)的值为(  )
A.6B.7C.8D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为(  )
A.-9B.9C.0D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

奇函数f(x)满足对任意x∈R都有f(x+2)=-f(x)成立,且f(1)=8,则f(2008)+f(2009)+f(2010)的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源:湖北模拟 题型:填空题

奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为______.

查看答案和解析>>


同步练习册答案