精英家教网 > 高中数学 > 题目详情
定义在R上的函数y=f(x)满足下列两个条件:(1)对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);(2)y=f(x+2)的图象关于y轴对称.则下列结论中,正确的是(  )
A.f(
1
2
)<f(
5
2
)<f(3)
B.f(
1
2
)<f(3)<f(
5
2
)
C.f(7)<f(
1
2
)<f(
5
2
)
D.f(7)<f(
5
2
)<f(
1
2
)
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足下列两个条件:(1)对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);(2)y=f(x+2)的图象关于y轴对称.则下列结论中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数y=f(x)满足下列两个条件:(1)对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);(2)y=f(x+2)的图象关于y轴对称.则下列结论中,正确的是(  )
A.f(
1
2
)<f(
5
2
)<f(3)
B.f(
1
2
)<f(3)<f(
5
2
)
C.f(7)<f(
1
2
)<f(
5
2
)
D.f(7)<f(
5
2
)<f(
1
2
)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年吉林省松原市前郭五中高一(上)月考数学试卷(解析版) 题型:选择题

定义在R上的函数y=f(x)满足下列两个条件:(1)对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);(2)y=f(x+2)的图象关于y轴对称.则下列结论中,正确的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆一中高一(上)期中数学试卷(解析版) 题型:选择题

定义在R上的函数y=f(x)满足下列两个条件:(1)对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);(2)y=f(x+2)的图象关于y轴对称.则下列结论中,正确的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在R上的函数y=f(x)满足下列两个条件:(1)对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);(2)y=f(x+2)的图象关于y轴对称.则下列结论中,正确的是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列函数:①y=x2+1;②y=-|x|;③y=(
1
2
x;④y=log2x;
其中同时满足下列两个条件的函数的个数是(  )
条件一:定义在R上的偶函数;
条件二:对任意x1,x2∈(0,+∞),(x1≠x2),有
f(x1)-f(x2)
x1-x2
<0.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省六安市寿县二中高三(上)月考数学试卷(解析版) 题型:填空题

给出下列六个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x)=0,则函数y=f(x)在x=x处取得极值;
③若m≥-1,则函数y=的值域为R;
④“a=1”是“函数在定义域上是奇函数”的充分不必要条件.
⑤函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑥满足条件AC=,AB=1的三角形△ABC有两个.
其中正确命题的个数是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省松原市油田高中高三(上)第二次摸底数学试卷(理科)(解析版) 题型:填空题

给出下列六个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x)=0,则函数y=f(x)在x=x处取得极值;
③若m≥-1,则函数y=的值域为R;
④“a=1”是“函数在定义域上是奇函数”的充分不必要条件.
⑤函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑥满足条件AC=,AB=1的三角形△ABC有两个.
其中正确命题的个数是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省松原市油田高中高三(上)第二次摸底数学试卷(文科)(解析版) 题型:填空题

给出下列六个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x)=0,则函数y=f(x)在x=x处取得极值;
③若m≥-1,则函数y=的值域为R;
④“a=1”是“函数在定义域上是奇函数”的充分不必要条件.
⑤函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑥满足条件AC=,AB=1的三角形△ABC有两个.
其中正确命题的个数是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省六安市寿县二中高三(上)月考数学试卷(解析版) 题型:填空题

给出下列六个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x)=0,则函数y=f(x)在x=x处取得极值;
③若m≥-1,则函数y=的值域为R;
④“a=1”是“函数在定义域上是奇函数”的充分不必要条件.
⑤函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑥满足条件AC=,AB=1的三角形△ABC有两个.
其中正确命题的个数是   

查看答案和解析>>


同步练习册答案