精英家教网 > 高中数学 > 题目详情
若△ABC的三边之长分别为a、b、c,内切圆半径为r,则△ABC的面积为 
r(a+b+c)
2
.根据类比思想可得:若四面体A-BCD的三个侧面与底面的面积分别为S1、S2、S3、S4,内切球的半径为r,则四面体的体积为(  )
A.
r(S1+S2+S2+S4)
3
B.
r(S1+S2+S2+S4)
4
C.
r(S1+S2+S2+S4)
5
D.
r(S1+S2+S2+S4)
6
相关习题

科目:高中数学 来源: 题型:

若△ABC的三边之长分别为a、b、c,内切圆半径为r,则△ABC的面积为 
r(a+b+c)
2
.根据类比思想可得:若四面体A-BCD的三个侧面与底面的面积分别为S1、S2、S3、S4,内切球的半径为r,则四面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省长沙县实验中学高二下学期期中考试理科数学试卷(带解析) 题型:单选题

若△ABC的三边之长分别为a、b、c,内切圆半径为r,则△ABC的面积为 .根据类比思想可得:若四面体A-BCD的三个侧面与底面的面积分别为,内切球的半径为r,则四面体的体积为(   )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高二下学期期中考试理科数学试卷(解析版) 题型:选择题

若△ABC的三边之长分别为a、b、c,内切圆半径为r,则△ABC的面积为 .根据类比思想可得:若四面体A-BCD的三个侧面与底面的面积分别为,内切球的半径为r,则四面体的体积为(   )

A.                    B.  C.  D.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若△ABC的三边之长分别为a、b、c,内切圆半径为r,则△ABC的面积为 
r(a+b+c)
2
.根据类比思想可得:若四面体A-BCD的三个侧面与底面的面积分别为S1、S2、S3、S4,内切球的半径为r,则四面体的体积为(  )
A.
r(S1+S2+S2+S4)
3
B.
r(S1+S2+S2+S4)
4
C.
r(S1+S2+S2+S4)
5
D.
r(S1+S2+S2+S4)
6

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省常德市高三(上)质量检测数学试卷(理科)(解析版) 题型:选择题

若△ABC的三边之长分别为a、b、c,内切圆半径为r,则△ABC的面积为 .根据类比思想可得:若四面体A-BCD的三个侧面与底面的面积分别为S1、S2、S3、S4,内切球的半径为r,则四面体的体积为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若△ABC的三边之长分别为a、b、c,内切圆半径为r,则△ABC的面积为 .根据类比思想可得:若四面体A-BCD的三个侧面与底面的面积分别为,内切球的半径为r,则四面体的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若△ABC的三边之长分别为a、b、c,内切圆半径为r,则△ABC的面积为 数学公式.根据类比思想可得:若四面体A-BCD的三个侧面与底面的面积分别为S1、S2、S3、S4,内切球的半径为r,则四面体的体积为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2012年浙江省温州市高考数学二模试卷(理科)(解析版) 题型:选择题

若直线l同时平分一个三角形的周长和面积,则称直线l为该三角形的“Hold直线”,已知△ABC的三边之长分别为6、8、10,则△ABC的“Hold直线”( )
A.存在一条
B.存在两条
C.存在无数条
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若直线l同时平分一个三角形的周长和面积,则称直线l为该三角形的“Hold直线”,已知△ABC的三边之长分别为6、8、10,则△ABC的“Hold直线”


  1. A.
    存在一条
  2. B.
    存在两条
  3. C.
    存在无数条
  4. D.
    不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州二模)若直线l同时平分一个三角形的周长和面积,则称直线l为该三角形的“Hold直线”,已知△ABC的三边之长分别为6、8、10,则△ABC的“Hold直线”(  )

查看答案和解析>>


同步练习册答案