精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)=ax+k经过点(0,4),其反函数y=f-1(x)的图象经过点(7,1),则f(x)在定义域上是(  )
A.奇函数B.偶函数C.增函数D.减函数
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)=ax+k经过点(0,4),其反函数y=f-1(x)的图象经过点(7,1),则f(x)在定义域上是(  )
A、奇函数B、偶函数C、增函数D、减函数

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省信阳市息县高中高三(上)开学数学试卷(文科)(解析版) 题型:选择题

已知函数y=f(x)=ax+k经过点(0,4),其反函数y=f-1(x)的图象经过点(7,1),则f(x)在定义域上是( )
A.奇函数
B.偶函数
C.增函数
D.减函数

查看答案和解析>>

科目:高中数学 来源:2011年江西师大附中高考数学模拟试卷(文科)(解析版) 题型:选择题

已知函数y=f(x)=ax+k经过点(0,4),其反函数y=f-1(x)的图象经过点(7,1),则f(x)在定义域上是( )
A.奇函数
B.偶函数
C.增函数
D.减函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)=ax+k经过点(0,4),其反函数y=f-1(x)的图象经过点(7,1),则f(x)在定义域上是(  )
A.奇函数B.偶函数C.增函数D.减函数

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数y=f(x)=ax+k经过点(0,4),其反函数y=f-1(x)的图象经过点(7,1),则f(x)在定义域上是


  1. A.
    奇函数
  2. B.
    偶函数
  3. C.
    增函数
  4. D.
    减函数

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省潍坊市奎文一中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

给出以下五个命题:
①命题“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函数f(x)=k•cosx的图象经过点P(,1),则函数图象上过点P的切线斜率等于
③a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件.
④函数在区间(0,1)上存在零点.
⑤已知向量与向量的夹角为锐角,那么实数m的取值范围是(
其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2013学年安徽省芜湖市高考数学二模试卷(文科)(解析版) 题型:填空题

给出以下五个命题:
①命题“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函数f(x)=k•cosx的图象经过点P(,1),则函数图象上过点P的切线斜率等于
③a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件.
④函数在区间(0,1)上存在零点.
⑤已知向量与向量的夹角为锐角,那么实数m的取值范围是(
其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex(ax+b),曲线y=f(x)经过点P(0,2),且在点P处的切线为l:y=4x+2.
(1)求常数a,b的值;
(2)求证:曲线y=f(x)和直线l只有一个公共点;
(3)是否存在常数k,使得x∈[-2,-1],f(x)≥k(4x+2)恒成立?若存在,求常数k的取值范围;若不存在,简要说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•江门模拟)已知函数f(x)=ex(ax+b),曲线y=f(x)经过点P(0,2),且在点P处的切线为l:y=4x+2.
(1)求常数a,b的值;
(2)求证:曲线y=f(x)和直线l只有一个公共点;
(3)是否存在常数k,使得x∈[-2,-1],f(x)≥k(4x+2)恒成立?若存在,求常数k的取值范围;若不存在,简要说明理由.

查看答案和解析>>

科目:高中数学 来源:芜湖二模 题型:填空题

给出以下五个命题:
①命题“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函数f(x)=k•cosx的图象经过点P(
π
3
,1),则函数图象上过点P的切线斜率等于-
3

③a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件.
④函数f(x)=(
1
2
)x-x
1
3
在区间(0,1)上存在零点.
⑤已知向量
a
=(1,-2)
与向量
b
=(1,m)
的夹角为锐角,那么实数m的取值范围是(-∞,
1
2

其中正确命题的序号是______.

查看答案和解析>>


同步练习册答案