【题目】甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:
(1)一共有多少场比赛?
(2)四个人最后得分的总和是多少?
(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?
【答案】(1)6场.(2)12分.(3)3分.
【解析】
试题分析:(1)四名同学总共打的场数是:4×3÷2=6场;
(2)四个人最后比赛结果是平局或者胜局,所以一场会得2分,得分为:2×6=12分;
(3)我们对乙丙假设进行求解,假设乙丙两胜;假设乙丙一胜一平.看看哪种情况符合题意,进而解决问题.
解:(1)4×3÷2=6(场)
答:一共有6场比赛.
(2)6×2=12(分)
答:四个人最后得分的总和是12分.
(3)②不可能三胜,如果三胜肯定得第一,而不是第二名.
②假设乙丙两胜,甲则三胜或两胜一平,如果甲三胜,则共有7场胜,总共才6场比赛,不可能.如果甲两胜一平,则乙丙两胜一负,现在总共有6胜,所以总共应该6负则所有比赛都是胜﹣负,没平﹣平,矛盾.所以乙丙两胜也不可能.
③假设乙丙一胜一平,正好可以,乙得3分.
④其它情况均不成立.
答:乙得了3分.
科目:小学数学 来源: 题型:
【题目】(4分)(1)小悦的闹钟比标准时间每小时快3分钟.一天晚上11点,小悦把钟校准,并把闹铃定在第二天早上6点.试问:当闹铃响起时,标准时间是几点几分?
(2)阿奇的手表比标准时间每小时慢4分钟.一天早上8点,阿奇将表校准,试问:当这只表指向下午3点的时候,标准时间是几点几分?
查看答案和解析>>
科目:小学数学 来源: 题型:
【题目】甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:
①每门功课五个人的分数恰巧分别为l、2、3、4、5;
②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;
③丙有四门功课的分数相同.请你把表格补充完整.
语文 | 数学 | 英语 | 音乐 | 美术 | 总分 | |
田 | 24 | |||||
乙 | ||||||
丙 | ||||||
丁 | 4 | |||||
戊 | 3 | 5 |
查看答案和解析>>
科目:小学数学 来源: 题型:
【题目】A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:
A打听到的:姓李,是女同学,13岁,东城区;
B打听到的:姓张,是男同学,11岁,海淀区;
C打听到的:姓陈,是女同学,13岁,东城区;
D打听到的:姓黄,是男同学,11岁,西城区;
E打听到的:姓张,是男同学,12岁,东城区.’
实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com