【题目】在一个半径为2厘米的圆内,作出一个最大的正三角形,保留作图根据.
【答案】如图
【解析】
试题分析:(1)根据圆心确定圆的位置,半径确定圆的大小,由此即可画出一个以O为圆心,以2厘米为半径的圆,
(2)在圆上任意找到一点,以圆的半径为半径画圆,两圆会得到两个交点,再以两点中任意一点为圆心,两点距离为半径作圆,即可求得三角形的第三个顶点,由此顺次连接这三个点即可得到这个圆内最大的正三角形.
解:(1)根据题干分析,以O为圆心,以2厘米为半径画圆,如图所示:
(2)在圆上任意找到一点,以圆的半径为半径画圆,两圆会得到两个交点,
再以两点中任意一点为圆心,两点之间的距离为半径作圆,即可求得三角形的第三个顶点,
由此顺次连接这三个点即可得到这个圆内最大的正三角形,如图所示.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com