精英家教网 > 小学数学 > 题目详情
生活中的数学.
如图中
公园东街
公园东街
和平大街
和平大街
是互相平行的街道,
和平大街
和平大街
公园后街
公园后街
是互相垂直的街道.
分析:根据平行线和垂线的定义:在同一平面内不相交的两条直线叫做平行线;当两条直线相交成90度时,这两条直线就互相垂直;据此解答即可.
解答:解:根据平行线和垂线的定义可知:如图中公园东街和和平大街是互相平行的街道,和平大街和公园后街是互相垂直的街道.
故答案为:公园东街,和平大街,和平大街,公园后街.
点评:此题考查了平行和垂直的定义.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

生活中的数学.
(1)如图,一条水渠的横截面是梯形,渠口宽36dm,渠底宽12dm,渠深8dm.这个水渠横截面的面积是多少平方分米?
(2)一块梯形广告牌的上底是12m,下底是16m,高是2m.涂这块广告牌一共用油漆56kg,平均每平方米用多少千克油漆?
(3)一批同样的圆木堆成的横截面呈梯形.上层是5根,下层是10根,一共堆6层,这批圆木共有多少根?

查看答案和解析>>

科目:小学数学 来源: 题型:

生活中的数学.
(1)如图,一块下底和高相等的梯形地,下底是上底的1.5倍,在这块地里栽种树苗,每棵树苗占地1.2m2,这块地一共可以种树苗多少棵?
(2)教室的讲台桌面是梯形,上底是14dm,下底是18dm,高是12dm,讲台桌面的面积是多少dm2?如果油漆每1dm2需要花费0.5元,那么油漆这个讲台的桌面需花费多少元?
(3)一块梯形果园,上底是12米,下底是13米,高是15米,它的面积是多少?平均每棵果树占地1.5平方米,这块果园有果树多少棵?

查看答案和解析>>

科目:小学数学 来源: 题型:071

  1.画示意图

  图形具有直观性,但在实际数学问题中的具体含义、具体条件以及数量关系往往比较隐蔽,比较复杂,那么画示意图是指将实际数学问题中隐藏复杂的内涵条件以及复杂的数量关系画出示意图,用几何图形直观形象地表示出来,这样不仅简单明了,而且容易从整体上把握题目,便于思考和求解,俗话说:“一图顶千言。”

  2.在计数问题中常见的几种示意图

  (1)画线段图。即把文字的含义用线段表示出来,例如“组队问题”“和差问题”和倍问题”“行程问题”等等,用线段图解起来往往比文字的叙述更简单明了得多。

  如:用1234四个数中两个数组成一个两位数,试求有几种不同的组合方法?

  ①用ABCD四点分别表示1234,画出线段图:

  ②线段的条数与组合方案数之间的关系是________

  (2)画“树图”。什么样的图叫做“树图”呢?请看实例:

  从甲村到乙村有两条路可走,从乙村到丙村有三条路可走(如图(a)),那么从甲村到丙村有几条路可走呢?

  根据题意可知,从甲村到乙村的每条道路都对应着从乙村到丙村的三条道路,于是我们可画出如图b的图形,这图形中明显地告诉我们,从甲村到丙村有________条路可走。

  在数学上将类似上图的这种没有回路的图形叫做“树图”,现实生活中最典型的“树图”是家谱。在数学学习中,画“树图”是计数问题中最基本的思考方法。

  3.需要同学们注意的是,数学问题来自于生活实际,千变万化、错综复杂、灵活性很强,在计数时,实际应用绝不能拘泥于这几种示意图。比如连线图、阶梯图等等,要因题而定,只要画出的示意图能帮助思考,推理或简化解答都可以。

查看答案和解析>>

科目:小学数学 来源:数学教研室 题型:072

  1.画示意图

  图形具有直观性,但在实际数学问题中的具体含义、具体条件以及数量关系往往比较隐蔽,比较复杂,那么画示意图是指将实际数学问题中隐藏复杂的内涵条件以及复杂的数量关系画出示意图,用几何图形直观形象地表示出来,这样不仅简单明了,而且容易从整体上把握题目,便于思考和求解,俗话说:“一图顶千言。”

  2.在计数问题中常见的几种示意图

  (1)画线段图。即把文字的含义用线段表示出来,例如“组队问题”“和差问题”和倍问题”“行程问题”等等,用线段图解起来往往比文字的叙述更简单明了得多。

  如:用1234四个数中两个数组成一个两位数,试求有几种不同的组合方法?

  ①用ABCD四点分别表示1234,画出线段图:

  ②线段的条数与组合方案数之间的关系是________

  (2)画“树图”。什么样的图叫做“树图”呢?请看实例:

  从甲村到乙村有两条路可走,从乙村到丙村有三条路可走(如图(a)),那么从甲村到丙村有几条路可走呢?

  根据题意可知,从甲村到乙村的每条道路都对应着从乙村到丙村的三条道路,于是我们可画出如图b的图形,这图形中明显地告诉我们,从甲村到丙村有________条路可走。

  在数学上将类似上图的这种没有回路的图形叫做“树图”,现实生活中最典型的“树图”是家谱。在数学学习中,画“树图”是计数问题中最基本的思考方法。

  3.需要同学们注意的是,数学问题来自于生活实际,千变万化、错综复杂、灵活性很强,在计数时,实际应用绝不能拘泥于这几种示意图。比如连线图、阶梯图等等,要因题而定,只要画出的示意图能帮助思考,推理或简化解答都可以。

查看答案和解析>>

同步练习册答案