【题目】平面上5个圆最多能把平面分成多少个部分?
【答案】22
【解析】
1个圆最多能把平面分成2个部分;2个圆最多能把平面分成4个部分;3个圆最多能把平面分成8个部分;现在加入第4个圆,为了使分成的部分最多,第4个圆必须与前面3个圆都有两个交点.如图1-72所示.因此得6个交点,这6个交点将第4个圆的圆周分成6段圆弧,而每一段圆弧将原来的部分一分为二,即增加了一个部分,于是,4个圆最多将平面分成8+6=14个部分.以此类推,我们可以计算出n个圆最多分平面的部分数为:2+1×2+2×2+…+(n-1)×2
=2+2[1+2+…+(n-1)]
=n2-n+2.
1个圆最多能把平面分成2个部分;2个圆最多能把平面分成4个部分;3个圆最多能把平面分成8个部分;现在加入第4个圆,为了使分成的部分最多,第4个圆必须与前面3个圆都有两个交点.如图1-72所示.因此得6个交点,这6个交点将第4个圆的圆周分成6段圆弧,而每一段圆弧将原来的部分一分为二,即增加了一个部分,于是,4个圆最多将平面分成8+6=14个部分.
同样道理,5个圆最多将平面分成14+8=22个部分.
所以,5个圆最多将平面分成22个部分.
科目:小学数学 来源: 题型:
【题目】直接写得数
1.4+2.6= 2.7﹣0.7= 8.3+1.05= 8.95﹣0.8=
2.2﹣1.6= 2.75+8.25= 4+0.7= 10.58﹣1.5=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com