分析 ①分子比分母小1,分子分别是1、2、3、4…的自然数,分母分别是2、3、4、5…的自然数;
②$\frac{1}{5}$=0.2,$\frac{3}{5}$=0.6,所以数列是以0.2为等差的等差数列;
③④⑤⑥通过同分,计算,得出规律:以$\frac{1}{2}$开头的一组成等差数列数字的和等于1-最后一个分数;据此得解.
解答 解:找规律填空:
$\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{4}{5}$ $\frac{5}{6}$
$\frac{1}{5}$ 0.4 $\frac{3}{5}$ 0.8 1 1.2
$\frac{1}{2}$+$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$
$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$=1-$\frac{1}{16}$=$\frac{15}{16}$
$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$=1-$\frac{1}{8}$=$\frac{7}{8}$
$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+$\frac{1}{32}$=1-$\frac{1}{32}$=$\frac{31}{32}$;
故答案为:$\frac{4}{5}$,$\frac{5}{6}$,1,1.2,$\frac{1}{4}$,$\frac{3}{4}$,$\frac{1}{16}$,$\frac{15}{16}$,$\frac{1}{8}$,$\frac{7}{8}$,$\frac{1}{32}$,$\frac{31}{32}$.
点评 认真分析题意,得出规律是解决此题的关键.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com