分析 (1)首先根据等式的性质,两边同时加上2.1,然后两边再同时除以3即可.
(2)首先根据比例的基本性质化简,然后根据等式的性质,两边同时除以$\frac{9}{5}$即可.
解答 解:(1)3x-2.1=1.44
3x-2.1+2.1=1.44+2.1
3x=3.54
3x÷3=3.54÷3
x=1.18
(2)$\frac{27}{5}$:x=$\frac{9}{5}$:2
$\frac{9}{5}$x=$\frac{27}{5}$×2
$\frac{9}{5}$x=$\frac{54}{5}$
$\frac{9}{5}$x÷$\frac{9}{5}$=$\frac{54}{5}$÷$\frac{9}{5}$
x=6
点评 (1)此题主要考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘以或同时除以一个数(0除外),两边仍相等.
(2)此题还考查了解比例问题,要熟练掌握,注意比例的基本性质的应用.
科目:小学数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com