【题目】甲、乙两人轮流往一个圆桌面上放同样大小的硬币.规则是:每人每次只能放一枚,硬币不许重叠,谁放完最后一枚硬币而使对方再也无处可放,谁就获胜.如果甲先放,那么他怎样放才能取胜?
【答案】如果甲先放,他要把第一枚硬币放到圆桌面的圆心处,以后总在乙上次放的硬币的对称点放置硬币,这样才能取胜.
【解析】
试题分析:我们用对称的思想来分析一下.圆是关于圆心对称的图形,若A是圆内除圆心外的任意一点,则圆内一定有一点B与A关于圆心对称(见右图,其中AO=OB).所以,圆内除圆心外,任意一点都有一个(关于圆心的)对称点.由此可以想到,只要甲把第一枚硬币放在圆桌面的圆心处,以后无论乙将硬币放在何处,甲一定能找到与之对称的点放置硬币.也就是说,只要乙能放,甲就一定能放.最后无处可放硬币的必是乙.
解:甲的获胜策略是:
把第一枚硬币放到圆桌面的圆心处,以后总在乙上次放的硬币的对称点放置硬币.
答:如果甲先放,他要把第一枚硬币放到圆桌面的圆心处,以后总在乙上次放的硬币的对称点放置硬币,这样才能取胜.
科目:小学数学 来源: 题型:
【题目】75﹣25=50,280﹣80=200,200×50=10000,列综合算式是( )
A.(75﹣25)×(280﹣80) B.75﹣25×280﹣80 C.(75﹣25)×280﹣80
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com