【题目】把两个长、宽、高分别是9厘米、7厘米、4厘米的相同长方体,拼成一个大长方体,这个大长方体的表面积最少是多少?
【答案】382平方厘米
【解析】根据两个长方体拼组成大长方体的方法,拼在一起的面越小,那么拼组后的大长方体的表面积就越大,反之,拼组后的表面积就越小;所以要使拼成的一个大长方体的表面积最小,只要把两个大面(9×7)拼在一起,然后用两个小长方体的表面积之和减去减少的面积解答即可。
解:(9×7+9×4+7×4)×2×2-9×7×2
=127×2×2-126
=508-126
=382(平方厘米)
答:大长方体的表面积最小是382平方厘米。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com