【题目】已知函数(是自然对数的底数)
(1)若直线为曲线的一条切线,求实数的值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)设,若在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数的取值范围.
【答案】(1);(2);(3)或.
【解析】试题分析:
(1)设切点,根据导数的几何意义求解.(2)分单调递增合递减两种情况考虑,将问题转化为导函数大(小)于等于零在恒成立求解可得的范围.(3)由题意得,令,然后对实数的取值进行分类讨论,并根据的符号去掉绝对值,再结合导数得到函数的单调性,进而得到函数有极值时实数的取值范围.
试题解析:
(1)设切点,则(*)
又
,代入(*)得
.
(2)设,
当单调递增时,
则在上恒成立,
∴ 在上恒成立,
又
解得.
当单调递减时,
则在上恒成立,
∴在上恒成立,
综上单调时的取值范围为.
(3),
令则,
当时, , 单调递增,
∴,即.
1)当,即时,
∴,
则单调递增,
在上无极值点.
2)当即时,
∴
I)当,即时,
在递增,
,
在上递增,
在上无极值点.
II)当时,由
在递减, 递增,
又
使得
在上单调递减,在上单调递增,
在上有一个极小值点.
3)当时, ,
在上单调递减,在上单调递增,
又,
在上恒成立,
无极值点.
4)当时,
在递增,
使得,
当时, 当时, ,
,
,
令,
下面证明,即证,
又
,
即证,所以结论成立,即,
在递减, 递增,
为的极小值.
综上当或时, 在上有极值点.
科目:小学数学 来源: 题型:
【题目】设数列的首项为1,前n项和为,若对任意的,均有(k是常数且)成立,则称数列为“数列”.
(1)若数列为“数列”,求数列的通项公式;
(2)是否存在数列既是“数列”,也是“数列”?若存在,求出符合条件的数列的通项公式及对应的k的值;若不存在,请说明理由;
(3)若数列为“数列”, ,设,证明: .
查看答案和解析>>
科目:小学数学 来源: 题型:
【题目】分母是2的真分数有:.
分母是3的真分数有:、,它们的和是1.
分母是4的真分数有:、、,它们的和是1.
分母是5的真分数有:,它们的和是2.
…
请你仔细观察,根据发现的规律,解答下面的问题:
①分母是2005的所有真分数的和是多少?
②分母不超过2005的所有真分数的和是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com