精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)此抛物线有最大值还是最小值?请求出其最大或最小值;
(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.
(1)将A(-2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,得
4a-2b+c=0
16a+4b+c=0
c=4

解得
a=-
1
2
b=1
c=4

所以此抛物线的解析式为y=-
1
2
x2+x+4;

(2)∵y=-
1
2
x2+x+4,a=-
1
2
<0,
∴抛物线有最大值,最大值为
4×(-
1
2
)×4-12
4×(-
1
2
)
=
9
2


(3)∵点D(2,m)在抛物线y=-
1
2
x2+x+4上,
∴m=-
1
2
×22+2+4=4,
∴D(2,4),
∵B(4,0),
∴BD=
(4-2)2+(0-4)2
=2
5

假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,分三种情况:
①如果PB=PD,那么42+y2=22+(y-4)2,解得y=
1
2

所以P1(0,
1
2
);
②如果BP=BD,那么42+y2=20,解得y=±2(负值舍去),
所以P2(0,2);
③如果DP=DB,那么22+(y-4)2=20,解得y=0或8,
y=0不合题意舍去,
y=8时,(0,8)与D,B三点共线,不合题意舍去,
所以P3(0,8);
综上可知,所有符合条件的P点的坐标为P1(0,
1
2
),P2(0,2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-x-
3
2
与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A,A是抛物线y=
1
2
x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,CB2交抛物线于点A2

(1)如图1,已知A1,A3两点的横坐标依次为1,3,求线段CA2的长;
(2)如图2,若将抛物线y=
1
2
x2改为抛物线y=
1
2
x2-x+1,且A1,A2,A3三点的横坐标为连续的整数,其他条件不变,求线段CA2的长;
(3)若将抛物线y=
1
2
x2改为抛物线y=ax2+bx+c(a>0),A1,A2,A3三点的横坐标为连续整数,其他条件不变,试猜想线段CA2的长(用a,b,c表示,并直接写出答案).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.那么使得M=1的x值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示是二次函数y=-
1
2
x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是(  )
A.4B.
16
3
C.2πD.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现,若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多售3箱,价格每升高1元,平均每天少售3箱.
①写出平均每天的销售量y与每箱售价x之间关系;
②求出商场平均每天销售这种牛奶的利润w与每箱售价x之间的关系;
③求在②的情况下当牛奶每箱售价定为多少时可达到最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是(  )
A.6sB.4sC.3sD.2s

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在半径为r的半圆⊙O中,半径OA⊥直径BC,点E、F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.
(1)求证:S四边形AEOF=
1
2
r2
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式及自变量x的范围;
(3)当S△OEF=
5
18
S△ABC时,求点E、F分别在AB、AC上的位置及EF的长.

查看答案和解析>>

同步练习册答案