精英家教网 > 初中数学 > 题目详情
把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).
(1)①设剪掉的正方形的边长为xcm.
则(40-2x)2=484,
即40-2x=±22,
解得x1=31(不合题意,舍去),x2=9,
∴剪掉的正方形的边长为9cm.
②侧面积有最大值.
设剪掉的小正方形的边长为acm,盒子的侧面积为ycm2
则y与a的函数关系为:y=4(40-2a)a,
即y=-8a2+160a,
即y=-8(a-10)2+800,
∴a=10时,y最大=800.
即当剪掉的正方形的边长为10cm时,长方形盒子的侧面积最大为800cm2

(2)在如图的一种剪裁图中,设剪掉的长方形盒子的高为xcm.
2(40-2x)(20-x)+2x(20-x)+2x(40-2x)=550,
解得:x1=-35(不合题意,舍去),x2=15.
∴剪掉的长方形盒子的高为15cm.
40-2×15=10(cm),
20-15=5(cm),
此时长方体盒子的长为10cm,宽为5cm,高为15cm.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图①,抛物线y=ax2+bx+c与x轴相交于O、A两点直线y=-x+3与y轴交于B点,与该抛物线交于A,D两点,已知点D横坐标为-1.(1)求这条抛物线的解析式;
(2)如图①,在线段OA上有一动点H(不与O、A重合),过H作x轴的垂线分别交AB于P点,交抛物线于Q点,若x轴把△POQ分成两部分的面积之比为1:2,请求出H点的坐标;
(3)如图②,在抛物线上是否存在点C,使△ABC为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)此抛物线有最大值还是最小值?请求出其最大或最小值;
(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中给定以下五个点A(-3,0),B(-1,4),C(0,3),D(
1
2
7
4
),E(1,0).
(1)请从五点中任选三点,求一条以平行于y轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度,把Rt△OAB沿x轴正方向平移1个单位长度后得△AA1B1
(1)求以A为顶点,且经过点B1的抛物线的解析式;
(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
4
5
x2+
24
5
x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.
(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是(  )
A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒

查看答案和解析>>

同步练习册答案