精英家教网 > 初中数学 > 题目详情
竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是(  )
A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒

由题意可知:h(2)=h(6),
即4a+2b=36a+6b,
解得b=-8a,
函数h=at2+bt的对称轴t=-
b
2a
=4,
故在t=4s时,小球的高度最高,
题中给的四个数据只有C第4.2秒最接近4秒,
故在第4.2秒时小球最高
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,-1)
(1)求经过B、E、C三点的二次函数的解析式;
(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;
(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系xOy中,二次函数y=
1
2
x2+
3
4
nx+2-m
的图象与x轴交于A、B两点,与y轴交于点C,其中点A在点B的左边,若
∠ACB=90°,
CO
AO
+
BO
CO
=1

(1)求点C的坐标及这个二次函数的解析式.
(2)试设计两种方案:作一条与y轴不重合、与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的四分之一.求所截得的三角形三个顶点的坐标(说明:不要求证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线经过点(1,0),(-5,0),且顶点纵坐标为
9
2
,这个二次函数的解析式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线m的解析式为y=x2-4,与x轴交于A、C两点,B是抛物线m上的动点(B不与A、C重合),且B在x轴的下方,抛物线n与抛物线m关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求证:点D一定在抛物线n上.
(2)平行四边形ABCD能否为矩形?若能为矩形,求出这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);若不能为矩形,请说明理由.
(3)若(2)中过A、B、C、D的圆交y轴于E、F,而P是弧CF上一动点(不包括C、F两点),连接AP交y轴于N,连接EP交x轴于M.当P在运动时,四边形AEMN的面积是否改变?若不变,则求其面积;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-x-
3
2
与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A,A是抛物线y=
1
2
x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,CB2交抛物线于点A2

(1)如图1,已知A1,A3两点的横坐标依次为1,3,求线段CA2的长;
(2)如图2,若将抛物线y=
1
2
x2改为抛物线y=
1
2
x2-x+1,且A1,A2,A3三点的横坐标为连续的整数,其他条件不变,求线段CA2的长;
(3)若将抛物线y=
1
2
x2改为抛物线y=ax2+bx+c(a>0),A1,A2,A3三点的横坐标为连续整数,其他条件不变,试猜想线段CA2的长(用a,b,c表示,并直接写出答案).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).

查看答案和解析>>

同步练习册答案