分析 (1)先求出k的值,进而得出mn=12,然后利用三角形的面积公式建立方程,联立方程组求解即可;
(2)先表示出BE,CE,DE,AE,进而求出BE•CE和DE•CE即可得出结论;
(3)利用(2)的结论得出△DEC∽△BEA,进而得出AB∥CD,即可得出四边形ADCB是菱形即可得出点B的坐标.
解答 解:(1)∵函数y=$\frac{k}{x}$(x>0,k是常数)的图象经过A(2,6),
∴k=2×6=12,
∵B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,
∴mn=12①,BD=m,AE=6-n,
∵△ABD的面积为3,
∴$\frac{1}{2}$BD•AE=3,
∴$\frac{1}{2}$m(6-n)=3②,
联立①②得,m=3,n=4,
∴B(3,4);
设直线AB的解析式为y=kx+b(k≠0),
则$\left\{\begin{array}{l}{2k+b=6}\\{3k+b=4}\end{array}\right.$,
∴$\left\{\begin{array}{l}{k=-2}\\{b=10}\end{array}\right.$,
∴直线AB的解析式为y=-2x+10
(2)∵A(2,6),B(m,n),
∴BE=m-2,CE=n,DE=2,AE=6-n,
∴DE•AE=2(6-n)=12-2n,
BE•CE=n(m-2)=mn-2n=12-2n,
∴DE•AE=BE•CE,
∴$\frac{DE}{CE}=\frac{BE}{AE}$
(3)由(2)知,$\frac{DE}{CE}=\frac{BE}{AE}$,
∵∠AEB=∠DEC=90°,
∴△DEC∽△BEA,
∴∠CDE=∠ABE
∴AB∥CD,
∵AD∥BC,
∴四边形ADCB是平行四边形.
又∵AC⊥BD,
∴四边形ADCB是菱形,
∴DE=BE,CE=AE.
∴B(4,3).
点评 此题是反比例函数综合题,主要考查了待定系数法,相似三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,解(1)的关键是确定出k的值,解(2)的关键是表示出DE•AE,BE•CE,解(3)的关键是判断出四边形ADCB是菱形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0 | B. | 2a+2b+2c | C. | 4a | D. | 2b-2c |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 运输单位 | 运输速度(千米/时) | 运费单价(元/吨•千米) | 装卸费用(元) |
| 汽车货运公司 | 50 | 1.8 | 2500 |
| 火车货运站 | 100 | 1.6 | 4500 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com