精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形中,延长使,以为边作正方形,延长,连接的中点,连接分别与交于点.则下列说法:①;②;③;④.其中正确的有(

A.4B.3C.2D.1

【答案】A

【解析】

根据正方形的性质,以及中点的性质可得△FGN≌△HAN,即证①;利用角度之间的等量关系的转换可以判断②;根据△AKH∽△MKF,进而利用相似三角形的性质即可判断③;设AN=AG=x,则AH=2xFM=6x,根据△AKH∽△MKF得出,再利用三角形的面积公式求出△AFN的面积,再利用即可求出四边形DHKM的面积,作比即可判断④.

∵四边形EFGB是正方形,CE=2EB,四边形ABCD是正方形

GAB中点,∠FGN=HAN=90°AD=AB

FG=AG=GB=AB

HAD的中点

AH=AD

FG=HA

又∠FNG=HNA

∴△FGN≌△HAN,故①正确;

∵∠DAM+GAM=90°

又∠NFG+FNG=90°

即∠FNG=GAM

∵∠FNG+NFG+90°=180°

AMD+DAM+90°=180°

FNG=GAM=AMD

,故②正确;

由图可得:MF=FG+MG=3EB

AKH∽△MKF

KF=3KH

又∵NH=NF

FH=KF+KH=4KH=NH+NF

NH=NF=2KH

KH=KN

FN=2NK,故③正确;

AN=GNAN+GN=AG

∴可设AN=AG=x,则AH=2xFM=6x

由题意可得:△AKH∽△MKF且相似比为:

∴△AKHAH为底边的高为:

,故④正确;

故答案选择A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】本题9把代数式通过配凑等手段得到完全平方式再运用完全平方式是非负性这一性质增加问题的条件这种解题方法叫做配方法配方法在代数式求值解方程最值问题等都有着广泛的应用

例如:用配方法因式分解:a2+6a+8

原式=a2+6a+9-1

=a+32 –1

=a+3-1)(a+3+1

=a+2)(a+4

M=a2-2ab+2b2-2b+2利用配方法求M的最小值

a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1

=a-b2+b-12 +1

a-b20,(b-12 0

当a=b=1时M有最小值1

请根据上述材料解决下列问题:

1在横线上添上一个常数项使之成为完全平方式:a 2+4a+

2用配方法因式分解 a2-24a+143

3M=a2+2a +1M的最小值

4已知a2+b2+c2-ab-3b-4c+7=0a+b+c的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大小为4×4的正方形网格中,是相似三角形的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,C90°AD平分CABDEABE,若AC6BC8

1)求DE的长;

2)求ADB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A0a),B0b),Cmb)且(a-42+ =0

1)求C点坐标

2)作DE DC,交y轴于E点,EF AED的平分线,且DFE= 90o 求证:FD平分ADO

3E y 轴负半轴上运动时,连 EC,点 P AC 延长线上一点,EM 平分∠AEC,且 PMEM,PNx 轴于 N 点,PQ 平分∠APN,交 x 轴于 Q 点,则 E 在运动过程中,的大小是否发生变化,若不变,求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,把二元一次方程的一个解用一个点表示出来,例如:可以把它的其中一个解用点(21 )在平面直角坐标系中表示出来

探究1:

(1)请你在直角坐标系中标出4个以方程的解为坐标的点,然后过这些点中的任意两点作直线,你有什么发现,请写出你的发现 .

在这条直线上任取一点,这个点的坐标是方程的解吗? (不是”___

(2)以方程的解为坐标的点的全体叫做方程的图象.根据上面的探究想一想:方程的图象是_ _.

探究2:根据上述探究结论,在同-平面直角坐标系中画出二元一次方程组中的两个二元一次方程的图象,由这两个二元一次方程的图象,请你直接写出二元一次方程组的解,即

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,点边的中点,点边上一动点(不与点重合),延长交射线于点,连接

1)求证:四边形是平行四边形;

2)填空:

①当的值为_______时,四边形是矩形;

②当的值为______时,四边形是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在一笔直的海岸线上有两个观测站,的正东方向,(单位:)有一艘小船在点处,从测得小船在北偏西的方向,从测得小船在北偏东的方向(结果保留根号)

(1)求点到海岸线的距离;

(2)小船从点处沿射线的方向航行一段时间后,到达点处,此时,从测得小船在北偏西的方向,求点与点之间的距离

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.

1)求甲、乙两种型号设备每台的价格;

2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;

3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.

查看答案和解析>>

同步练习册答案