精英家教网 > 初中数学 > 题目详情

如图,已知线段AB.

(1)用尺规作图的方法作出线段AB的垂直平分线CD(保留作图痕迹,不要求写出作法);
(2)在(1)中所作的直线CD上任意取两点M,N(线段AB的上方).连结AM,AN,BM,BN.求证:∠MAN=∠MBN.

(1)作图见解析;(2)证明见解析.

解析试题分析:(1)根据线段垂直平分线的方法作图即可;
(2)根据线段垂直平分线的性质可得AM=BM,AN=BN,再根据等边对等角可得∠MAB=∠MBA,∠NAB=∠NBA,进而可得∠MAN=∠MBN.
试题解析(1)如图所示:

(2)∵l是AB的垂直平分线,
∴AM=BM,AN=BN,
∴∠MAB=∠MBA,∠NAB=∠NBA,
∴∠MAB-∠NAB=∠MBA-∠NBA,
即:∠MAN=∠MBN.
考点: 1.作图—基本作图;2.线段垂直平分线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

直线l1平行于直线l2,直线l3、l4分别与l1、l2交于点B、F和A、E,点D是直线l3上一动点,DC∥AB交l4于点C.
(1)如图,当点D在l1、l2两线之间运动时,试找出∠BAD、∠DEF、∠ADE之间的关系,并说明理由;
(2)当点D在l1、l2两线外侧运动时,试探究∠BAD、∠DEF、∠ADE之间的关系(点D和B、F不重合),画出图形,给出结论,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在一条数轴上有A、B两点,点A表示数,点B表示数6。点P是该数轴上的一个动点(不与A、B重合)表示数x。点M、N分别是线段AP、BP的中点。
(1)如果点P在线段AB上,则点M表示的数是        , 则点N表示的数是      (用含x 的代数式表示)。并计算线段MN的长。
(2)如果点P在点B右侧,请你计算线段MN的长。
(3)如果点P在点A左侧,则线段MN的长度会改变吗?如果改变,请说明理由;如果不变,请直接写出结果。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等. 如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.

(1) 如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=_____°,∠3=_____°.

(2) 在(1)中m∥n,若∠1=55°,则∠3=______°;若∠1=40°,则∠3=______°.
(3) 由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=______°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求出∠BOD的度数;
(2)请通过计算说明OE是否平分∠BOC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某考察队从营地P处出发,沿北偏东60°前进了3km到达A地,再向正南方向前进3km最后达C地.回答下列问题:
(1)用1cm代表1千米,画出考察队行进路线图;
(2)度量出C地在营地的什么方向上?(精确到1°)
(3)测算出考察队此时离营地实际多远?(精确到0.1千米)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作图题:有公路同侧、异侧的两个城镇A、B,如下图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置。(保留作图痕迹,不写作法).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,∠MON及边ON上一点A.在∠MON内部求作:点P,使得PA⊥ON,且点P到∠MON两边的距离相等.(请尺规作图,保留作图痕迹,不要求写出作法,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

在直角坐标系中,已知点A(-2,0)、B(0,4)、C(0,3),过点C作直线交x轴于点D,使得以D、O、C为顶点的三角形与△AOB相似,这样的直线最多可以作(   )
A.2条       B.3条           C.4条              D.6条

查看答案和解析>>

同步练习册答案