精英家教网 > 初中数学 > 题目详情
某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件。
(1)求售价为70元时的销售量及销售利润;
(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;
(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?
(1)600,12000;(2)y=-20(x-75)2+12500,75;(3)70元或80元.

试题分析:此题应明确公式:销售利润=销售量×(售价-成本),求售价为多少元时获得最大利润,需考虑二次函数最值问题.
试题解析:(1)销售量为800-20×(70-60)=600(件),
600×(70-50)=600×20=12000(元)
(2)y=(x-50)[800-20(x-60)]=-20x2+3000x-100000,
=-20(x-75)2+12500,
所以当销售价为75元时获得最大利润为12500元.
(3)当y=12000时,
-20(x-75)2+12500=12000,
解得x1=70,x2=80,
即定价为70元或80元时这批服装可获利12000元.
考点: 二次函数的应用.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(),与y轴交于C()点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP’C,那么是否存在点P,使四边形POP’C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某个体户春节前代理销售某种品牌的酒,已知进价为每件40元,生产厂家要求销售价不少于40元,且不大于70元,市场调查发现:若每件以50元销售,平均每天可销售90件,价格每降低1元,平均每天多销售3件,价格每升高1元,平均每天少销售3件.
(1)写出平均每天销售量y(件)与每件销售价x(元)之间的函数关系式,并注明自变量的取值范围;
(2)求出该个体户每天销售这种酒的毛利润W(元)与每件酒的售价x(元)之间的函数关系式,并注明自变量的取值范围(每件的毛利润=售价-进价);
(3)当酒的售价为多少时平均每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=ax2+1与双曲线y=的交点A的横坐标是2,则关于x的不等式+ax2+1<0的解集是              

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某区政府大力扶持大学生创业.李刚在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李刚每月获得利润为w(元),当销售单价定为每台多少元时,每月可获得最大利润?
(2)如果李刚想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李刚想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=x2交于点C,连接AC,则图中阴影部分的面积为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,抛物线的顶点是点P,对称轴与x轴相交于点Q,以点P为圆心,PQ长为半径画⊙P,那么下列判断正确的是(    )
A.x轴与⊙P相离;B.x轴与⊙P相切;
C.y轴与⊙P与相切;D.y轴与⊙P相交.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,矩形OABC过原点O,且A(0,2)、C(6,0),∠AOC的平分线交AB于点D.
(1)直接写出点B的坐标;
(2)如图,点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿轴正方向移动.设移动时间为秒.

①当t为何值时,△OPQ的面积等于1;
②当t为何值时,△PQB为直角三角形;
(3)已知过O、P、Q三点的抛物线解析式为y=-(x-t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图,①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1),其中结论正确的有(  )
A.③④B.③⑤C.③④⑤D.②③④⑤

查看答案和解析>>

同步练习册答案